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Abstract—In this paper, we investigate whether the price of an
EEG device is directly correlated with the quality of the obtained
data when applied to a simple classification task. The data of
three different devices (one medical and two consumer) was used
to determine the eye state (open or closed). For classification,
83 machine learning algorithms were used on the raw EEG
data. While the cheapest device performed extremly poor with
only one classifier better than the majority vote the other two
devices achieved high accuracy. The lowest error rate for a more
expensive consumer EEG was 1.38% and produced by KStar. For
the medical device the best performing classifier was IBk which
achieved an error rate of 1.63%. Except for KStar, the classifiers
achieved a lower error rate by the medical EEG measurement
system than the consumer EEG system.

I. INTRODUCTION

There are many possible applications which could use brain
activity measured by electroencephalography (EEG) as an
input mode. For instance, the use of brain waves to control
computer games [1], track emotions [2], provide handicapped
people with an alternative input mode [3] and for different
military scenarios. [4]
There are several important points that have to be taken into
consideration when thinking about the use of EEG signals to
control applications:

1) the accuracy for the detection of a certain state from
which the control commands are generated

2) the speed of the detection algorithm
3) the cost of the EEG measurement device
4) the usability which includes preparation time and restric-

tions for the user during the use of the device.

One possible input for binary control tasks could be the state of
the eyes that is whether they are open or closed. In a previous
study [5], it was shown that the eye state can be predicted with
a consumer EEG with high accuracy of 97.3%. The advantage
of a consumer EEG system in comparison to a medical EEG
would be the lower price and the higher usability. Most of the
consumer EEGs can be easily set up and do not restrict the
movement of the user by a wired connection to amplifiers.

Yet, although the results were promising, there were several
problems. First of all, the study[5] was conducted with only
one participant. Thus, it was not clear whether the results were
statistically significant. Second, there was no comparison to
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the accuracy achieved when using a medically approved
EEG. Despite of the fact that an error rate of 2.7% can still
be too high for less fault-tolerant applications, the problem
with the best classification algorithm is, as already pointed
out in Roesler’s study, the slow classification speed. The slow
classification is caused by the fact that KStar is an instance
based learner [6]. This means that the algorithm classifies
a new instance by comparing it to a database of previously
classified instances which makes the classifier unusable for
online classification and thus for the use in any real-time
application.

Thus, even if a professional EEG device would only
increase the performance of other classifiers, it could be a
necessary investment when the goal is to use the EEG signal
as an input signal for real-time applications .

The paper is structured as follows: Section II provides the
detailed information about the conducted experiment, the EEG
devices and the obtained corpora. In Section III the machine
learning algorithms used for classification are described. Then,
the classification results for each device are described. Finally,
Section V draws conclusions and outlines possibilities for
future work.

II. MATERIALS AND METHODS

A. Stimuli and participants

The experiments were done in the same way as described
in [5]. All experiments were conducted in a quiet room. During
the experiment, the face of the participants was recorded. The
experimental procedure was specified as follows:

1) After placing the electrodes on the scalp the participants
were told to sit relaxed, face the camera and change the
eye state at free will after clicking the start button.

2) The task was repeated one to two times after a resting
period of one minute.

Additional constraints given to the participants were that the
individual eye state intervals should vary in length and the
duration of both eye states should be about the same when
accumulated over the entire session. The participants were not
aware of the fact that the first 20 seconds of the measurement
were not recorded. This was done to prevent artifacts due to
the clicking on the start button and initial movement to face
the camera.

B. EEG Measurements

The duration of the measurement was 140 seconds. Yet, as
described in the previous section the initial 20 seconds were
discarded to prevent artifacts. Most of the eye states were
automatically annotated during the measurement by the video



recording program. Only frames which the program could not
classify due to bad lighting conditions where later annotated
by hand. The used camera was a simple webcam.

C. EEG devices

Three different EEG devices were used for the measure-
ments. Due to the high accuracy achieved with the Epoc in [5]
the MindWave1 from NeuroSky was selected to see whether
a similar accuracy can be achieved with an even simpler and
cheaper device. Secondly, the Epoc2 from Emotiv was used
to verify the generalizability of the results and to represent a
more expensive consumer EEG. And finally, the BrainAmp
Standard3 from Brainproducts was investigated which is a
medical EEG and needs specific training to be set up.
Table I shows a comparison of some of the specifications of
the individual devices.

Device MindWave[7] Epoc[8] BrainAmp Standard[9]
available channels 1 14 32

used channels 1 14 12
sampling rate 512Hz 128Hz 1kHz

price 80$ 700$ 60,000e

TABLE I: EEG device comparison

Due to the fact that the MindWave and the Epoc have
different fixed electrode positions a direct comparison of the
quality of a single electrode is not possible. Therefore, the
difference in the number and position of the electrodes was
not specifically assessed when evaluating the experimental
performance. Thus, the number of electrodes of the BrainAmp
Standard was constrained to 12 of the 32 possible electrodes
to reduce the setup time and size of the corpora. The 12
electrodes were placed at the frontal, central and temporal
positions of the 10-20 system. [10] This was done because
most electrodes of the Epoc are frontal and the MindWave
has only one frontal electrode. A detailed overview of the
electrode positions is given in Figure 1

D. Corpora

Six copora were recorded for each device. The copora were
from up to four different probands (see Table II). All corpora
consist of as many attributes as the number of electrodes of the
corresponding EEG device plus the binary class attribute. How
many instances correspond to one class varies between the
corpora because the probands decided how long they opened
or closed their eyes. The percentage of instances belonging
to the eye open state varied between 18% and 63%. On
average 44.7% of the instances in the MindWave, 39.3% of
the instances in the Epoc and 44.4% of the instances in the
BrainAmp Standard datasets belonged to the eye open state.

1http://store.neurosky.com/products/mindwave-1
2http://www.emotiv.com/epoc.php
3http://www.brainproducts.com/productdetails.php?id=1

Fig. 1: Electrode positions. Blue circles indicate BrainAmp
Standard, red bordered the Epoch and green bordered the
MindWave.

device corpora participants attributes instances eye open
MindWave 6 4 2 44.7%

Epoc 6 3 15 39.3&
BrainAmp 6 2 13 44.4%

TABLE II: Overview of the used corpora

III. MACHINE LEARNING ALGORITHMS

For classifier testing, the Weka toolkit [11] version 3-6-11
was used. Ten-fold cross-validation was carried out for all 83
standard classifiers of the toolkit with default settings. Yet,
only 50 were running without an error on the datasets from all
devices. Some classifiers were not suitable for cross-validation
while others had problem with negative attribute values of the
BrainAmp Standard datasets. Although, it would have been
possible to preprocess the data to avoid the errors. The goal
was to evaluate the performance on the unprocessed raw data
and the remaining 50 classifiers were still sufficient to provide
a general picture about the quality of the obtained EEG data.
All classifiers were applied to each corpus separately. The
mean error rate was then calculated across all copora of a
device.

IV. CLASSIFICATION RESULTS

A. MindWave

For the MindWave the overall number of classifiers which
made a majority vote was 20. 29 of the remaining 30 classifiers
were performing worse than majority vote and only one
classifier (Conjunctive Rule) achieved an accuracy of 43.52%
which was slightly better than majority vote of 43.66%.

These results clearly show that the MindWave headset is not
suitable for even a simple task as the classification of the eye
state. However, this is not necessarily due to the fact that it has



only one sensor. The Epoc headset still gets less than half the
error rate when the classifiers are only trained with the values
of electrode F4. Thus, the bad accuracy is also due to the
quality of the electrode. To sum up, the MindWave does not
seem to be useful for serious EEG experiments or to control
an application.

B. Epoc

The results for the Epoc in [5] were already quite promising.
Yet, the results on the six corpora have shown an even lower
error rate for most classifiers. KStar [6] is again the best
performing classifier with a mean error rate of 1.38%. This
is a relative reduction over the result reported in [5] for KStar
with default settings of 56%. IBk [12] achieved with 2.66%
the second lowest error rate. Thus, the results are consistent
with [5] in that instance based learners achieved the lowest
error rates.
Close to them is RandomForest [13, p.407] with an error
rate of 3.83%. In contrast to the instance based learners,
RandomForest could be suitable for online classification. All
other classifiers which achieved an error rate below 10% were
mostly decision tree algorithms like FT, J48 or REPTree.
These algorithms could also be suitable for online classifi-
cation if the error rate can be decreased with the help of
parameter tuning.
The average error rate over all classifiers (excluding classifiers
which only achieved majority vote) was 16.5%.

C. BrainAmp Standard

For all classifiers except one the BrainAmp Standard
achieved a lower error rate than the Epoc headset. In contrast
to the Epoc headset the instance based learner IBk achieved
the lowest error rate with 1.63%, followed by an error rate
of 1.72% achieved by KStar. As previously mentioned,
instance based learners are in general not suitable for online
classification due to their slow classification speed. KStar
took nearly two weeks for ten-fold cross-validation on one
dataset from the BrainAmp Standard on a system with Ubuntu
12.04.1 LTS, QEMU Virtual CPU version 0.15.1, quadro core
with 2GHz each and 32GB RAM.

KStar and IBk were followed by FT [14] which is a
decision tree algorithm and which was also the third best
classifier for the Epoc device. However, the fourth place
was taken by the MultilayerPerceptron [15] algorithm
which achieved a more than five times lower error rate for
the BrainAmp Standard. Also the second neural network
algorithm, VotedPerceptron, performed nearly three times as
good on the BrainAmp Standard data. This clearly shows
that most of the algorithms which require extensive training
but provide fast classification were performing better on the
BrainAmp than the Epoc data.
The average error rate over all classifiers (excluding classifiers
which only achieved majority vote) was 11.1% and therefore
5.4% lower than the average error rate of the Epoc headset.
Which is a relative reduction of the error rate of 33%.

Fig. 2: Mean error rate of the error rates of all corpora for
BrainAmp Standard (blue) and Epoc (orange)

V. CONCLUSIONS AND FUTURE WORK

The results of the experiments with the three different
EEG devices have shown that the MindWave equipped with
only one sensor cannot be used for eye state prediction. Yet,
the more expensive consumer EEG device the Epoch headset
shows very high performance for eye state predicition.
Nevertheless, the quality of the data of a professional EEG
like the BrainAmp Standard is still higher than the Epoch
indicated by the lower average error rate. This can make
a significant difference when using the device for online
classification since several fast classifiers had a much lower
error rate on the data from the BrainAmp than for the
Epoc data. Additionally, a professional device offers the



possibility to freely choose the number and positions of the
used electrodes. This could also improve the performance
due to the selection of electrodes close to more influential
brain regions for the task of eye state prediction. Yet, the
advantages of the Epoc in comparison to the BrainAmp
Standard are the significantly lower price and the higher
usability due to a wireless connection and a faster and easier
setup.

Due to the fact that the Epoch and the BrainAmp Standard
performed quite similar on the investigated task, further work
will focus on more complicated tasks to see whether the
difference in price will then be more obviously represented
in the classification performance. Another step will also be to
classify the eye state in real time and while the participant is
carrying out other activities like moving around. This would
show whether an EEG can be used successfully to determine
the eye state in a real enviroment in which the participant will
most of the time not be able to sit relaxed on a chair without
moving. And further investigations will also explore whether
some electrode positions are more important than others for
eye state prediction in which case the number of sensors could
be decreased which would simplify the set up and could lead
to the development of a high quality EEG device with only
a few electrodes and a wireless connection to a computer to
evaluate the data in real-time.
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