
  

 

Abstract — In this paper, we tackle a five-class problem for 

distinguishing Alzheimer’s Disease, Parkinson’s Disease, Breast 

Cancer, Multiple Sclerosis, and healthy control patients. For 

this purpose, we used the raw microarray data from a publicly 

available corpus. We tested performance of 25 base learners, 

investigated the influence of feature selection on classification 

performance, applied parameter tuning and boosted 

performance even further using ensemble learning. We found 

AdaBoostM1 with J48 (open-source implementation of C4.5) as 

base learner performing best, with a classification error rate of 

8.8%. 

I. INTRODUCTION 

Diseases such as Alzheimer’s Disease, Parkinson’s 
Disease, Multiple Sclerosis, and Breast Cancer affect large 
parts of the population. Early detection of these diseases 
remains a problem despite huge efforts and successes. Often, a 
disease is diagnosed based on visible symptoms only, at which 
point the patient may face substantial damage already. Early 
detection and treatment, however, can help to slow down the 
progress of the disease, help mitigate symptoms and improve 
the overall live quality of patients. 

It has been shown, that autoantibodies in human blood are 
reliable biomarkers for identifying these diseases [1-3]. By 
using protein microarrays, the authors were able to identify 
small sets of antibodies differentially expressed for patients 
with one of the respective diseases. This knowledge can be 
used to develop new drugs and therapeutic methods. 

The selected antibodies allowed for a very accurate 
identification of the respective disease. However, they were 
not the only antibodies differentially expressed. Restriction to 
this small subset, information contained in the remaining 
antibodies cannot be used. Furthermore, in [1-3] 
RandomForest [4] was used as sole classifier to establish the 
predictive accuracy of the selected antibodies. 

In this paper, we tackle a five-class problem distinguishing 
Alzheimer’s Disease, Parkinson’s Disease, Multiple Sclerosis, 
Breast Cancer and healthy controls. We present results of 
different base learners, investigate the influence of feature 
selection on classification performance and improve 
classification performance further utilizing ensemble learning. 

To allow the scientific community to reproduce the 
experiments described in this work, we chose a publicly 
available corpus and used the open-source software kit Weka1, 
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which had previously been used successfully in context of 
gene expression microarrays [5]. Required changes to handle 
microarray data with Weka were implemented in Java. This 
code is also made publicly available2. 

The remainder of this paper is structured as follows: In 
Section II, we briefly discuss the corpus and evaluation 
methodology used in our study. In section III, we report 
experimental results before drawing conclusions in Section 
IV. 

II. MATERIALS AND METHODS 

A. Materials and Methods 

The corpus used in this work was first described in a study 
by Han et alters in [1] and is publicly available on the 
MIAME-compliant NCBI GEO database [6] under the 
accession number GSE29654. The corpus consists of 
microarrays of 159 patients. The detailed composition of the 
corpus is given in Table I. 

TABLE I.  DETAILED DEMOGRAPHIC INFORMATION OF 

PATIENTS 

Disease Samples 
Age 

Mean 

Age 

Range 

Sex male 

% 

Parkinson’s Disease 

Alzheimer’s Disease 

Multiple Sclerosis 

Breast Cancer 

Older Controls 

Younger Controls 

29 

50 

10 

30 

20 

20 

74.0 

78.5 

46.0 

46.7 

57.7 

24.7 

53 to 88 

61 to 97 

27 to 59 

32 to 54 

51 to 86 

19 to 30 

55 

40 

30 

0 

100 

65 

 

The authors of [1] used ProtoArray v5.0 Human Protein 
Microarrays from Invitrogen to identify autoantibodies in 
human sera. Each microarray contained 9,486 unique human 
protein antigens to identify autoantibodies. Proteins are 
printed in duplicate providing 18,972 data points. 

When analyzing the results with the freely available 
analysis software ProtoArray Prospector v5.2 3  from 
Invitrogen, only half of the data points are used [7]. We 
decided to utilize all data points, therefore basically doubling 
the corpus to 318 instances. 

To not miss any information, we did not apply any feature 
normalization method [8-9] as done in previous work. Instead, 
we used the raw signal derived from the difference of 
foreground and background intensity available from the 
aforementioned database. 
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B. Weka 

Weka [10] is a popular open-source toolbox for data 
mining offering a large variety of state-of-the-art classifiers. 

As the corpus is rather small in size, we decided to run 
leave-one-(patient)-out cross-validation. In this technique, a 
model is trained on all instances except for those of a given 
patient. These instances are used for testing. This procedure is 
repeated for all patients, and the results are finally 
consolidated. 

In our case, the training ser for each fold consists of 316 
instances and the test set of two instances from one patient. 
This separation by patient is crucial, since the results would 
else be overoptimistic. Using this method no microarray data 
from the individuals is in the training and test set at the same 
time. 

III. EXPERIMENTS 

A. Default Options 

 

Figure 1.  Baseline of different classification schemes available in Weka 

 

 

Baseline First, we investigated how different classifiers 
behave on the problem at hand. To this end, we used 23 base 
learners provided in the Weka and applied leave-one-out cross 
validation, as described above. The results are depicted in 

Figure 1. All 9,486 autoantibodies were considered, and the 
default settings provided by Weka were used for each 
classifier. 

We found that function- and tree-based learners performed 
best with a classification error rate of as low as 12%. 
Rule-based learners did not perform as well with the lowest 
classification error rate of 20%. Byesian and lazy learning 
schemes performed worst with classification error rates 
between 30% and 63%. 

The poor results for lazy learning schemes, is somewhat 
unexpected as those schemes often provide god performance. 
Other popular learners like Bayes [11], Support Vector 
Machines [12], C4.5 (J48) [13], Logistic Regression [14] or 
JRip [15] perform well for this problem. 

Feature Selection Inspired by previous work [1], we used 
attribute selection by information gain in order to investigate 
the influence of selecting different antibodies on the 
performance. We used a ranker discarding all features whose 
information gain is below a certain threshold. Results of these 
experiments are shown in Figure 2. 

 

Figure 2.  Dependency of classifier performance on feature selection by 

information gain of five exemplary base learners 

The classification error of rule- and tree-based learners 
remains relatively unaffected by information gain between 0 
and 0.5 after which the error rate start to increase. 
Function-based, lazy and Bayesian learners show a higher 
sensitivity towards feature selection. However, most of them 
have their minimal classification error between an information 
gain of 0 and 0.75. 

These results are reasonable as rule- and tree-based 
learners of the use information gain themselves to decide 
when to split or create rules. The more features are taken 
away, however, the more this selection process is affected. 



  

B. Parameter Tuning 

SimpleLogistic SimpleLogistic is a classifier for building 
linear logistic regression models. In order to fit the logistic 
models, SimpleLogistic uses LogitBoost [16] with simple 
regression functions as base learners. SimpleLogistic 
produces the best baseline with a classification error of less 
than 12%. Using a grid search, we tuned the beta value for 
weight trimming (W) for LogitBoost and the parameter for  
early stopping of LogitBoost based on heuristics (H). The 
tested values are W = 0, 0.1, …, 0.9 where zero means no 
weight trimming and H `0, 25, …, 100 where zero means no 
heuristic stop. The results are depicted in Figure 3. The 
number of LogitBoost iterations is cross-validated. However, 
by setting the parameter H to a value greater than zero, 
LogitBoost will terminate, if no new error minimum has been 
found in the last H iterations. 

 

Figure 3.  Classification Error Rate for SimpleLogistic depending on 

paramter W an H. As H has no influence on classification error rate, one line 

is visible only 

We found that parameter H did not have any effect at all on 
the performance of SimpleLogistic. In contrast, using weight 
trimming has a strong negative impact on the classification 
error. Assumptions made in [14] hold not true for this specific 
problem. In general, weight trimming can greatly improve 
computation performance without loss of accuracy. This is 
achieved by omitting attributes with very small weight 

C. Ensemble Learning 

Bagging Bagging [17] is a popular ensemble learning 
scheme utilizing multiple versions of a single base learner 
combining them by majority vote [10]. The implementation of 
bagging we used in this work has two main parameters with 
potential impact on classification performance. The first, 
being the number of iterations (I) and the other the size of the 
bag in percent of the training set. We used again a grid search 
with I = 10, 20, …, 100 and bag size of P = 25, 50, …, 100. 
The results are depicted in Figure 4.  

The minimal classification error with 11.94% was 
achieved with 100 iterations and a bag size of 50%. 

 

Figure 4.  Classification error rate for boosting depending on the number of 

iterations I and bag size P 

RandomForest In previous studies [1-3], excellent results 
were achieved using RandomForest [4]. RandomForest is also 
an ensemble learning scheme using RandomTree as base 
learner. In our experiment, we grew an unlimited tree and 
changed the number of attributes for the random selection       
K = 0, 10, …, 100. The results are depicted in Figure 5. 

 

Figure 5.  Classification error rate for RandomForest iterating over the 

number of RandomTrees I and number of features to consider in random 

selection K 

The minimal classification error we achieved was 16.04% 
with I = 80 and K = 0. RandomForest thus performed worse 
than bagging, boosting, and SimpleLogistic. 

AdaBoostM1 AdaBoostM1 [18] is an ensemble learning 
scheme utilizing boosting. Being related to bagging, boosting 
concentrates on subsequent iterations of previously incorrectly 
classified instances [10]. 

To get started, we used the default configuration provided 
by Weka. Here, DecisionStump was used as base learner and 



  

AdaBoostM1 run with ten iterations and weight pruning of 
100. This combination resulted in a classification error of 
50%. 

Next we applied J48 as base learner. J48 is the 
open-source implementation of the simple tree-based learner 
C4.5. Therefore, J48 is more likely to produce alternating 
results in presence of slight changes in the data set, as opposed 
to more complex schemes like LMT, being an essential 
property for applying Boosting. 

In a first run we used AdaBoostM1 with different values 
for weight threshold and number of iterations. We observed a 
gradual decrease in classification error with increasing 
threshold and number of iterations. 

Going from this observation, we evaluated AdaBoostM1 
with J48 with higher values for iterations and weight 
threshold. Figure 6 shows the learning curves for this setup. 
Using this approach, we could achieve a classification error of 
8.81% which equals 28 wrongly classified instances or 14 
patients. 

 

Figure 6.  Learning curves for AdaBoostM1 with J48 as base learner 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we demonstrated how Alzheimer’s Disease, 

Parkinson’s Disease, Multiple Sclerosis, Breast Cancer and 

healthy controls can be distinguished with an accuracy of 

more than 91% using boosting and unprocessed data from 

functional protein microarrays. However, the corpus used in 

this study is relatively small. Therefore, in order to verify the 

presented findings, testing on a larger corpus would be 

preferable. In addition, other ensemble learning schemes such 

as Stacking could be evaluated in the future. Moreover, it 

would be interesting to see how feature normalization such as 

proCAT [8] or Robust Linear Regression [9] affects the 

outcome of this classification problem. 
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