

Abstract — In this paper, we tackle a five-class problem for

distinguishing Alzheimer’s Disease, Parkinson’s Disease, Breast

Cancer, Multiple Sclerosis, and healthy control patients. For

this purpose, we used the raw microarray data from a publicly

available corpus. We tested performance of 25 base learners,

investigated the influence of feature selection on classification

performance, applied parameter tuning and boosted

performance even further using ensemble learning. We found

AdaBoostM1 with J48 (open-source implementation of C4.5) as

base learner performing best, with a classification error rate of

8.8%.

I. INTRODUCTION

Diseases such as Alzheimer’s Disease, Parkinson’s
Disease, Multiple Sclerosis, and Breast Cancer affect large
parts of the population. Early detection of these diseases
remains a problem despite huge efforts and successes. Often, a
disease is diagnosed based on visible symptoms only, at which
point the patient may face substantial damage already. Early
detection and treatment, however, can help to slow down the
progress of the disease, help mitigate symptoms and improve
the overall live quality of patients.

It has been shown, that autoantibodies in human blood are
reliable biomarkers for identifying these diseases [1-3]. By
using protein microarrays, the authors were able to identify
small sets of antibodies differentially expressed for patients
with one of the respective diseases. This knowledge can be
used to develop new drugs and therapeutic methods.

The selected antibodies allowed for a very accurate
identification of the respective disease. However, they were
not the only antibodies differentially expressed. Restriction to
this small subset, information contained in the remaining
antibodies cannot be used. Furthermore, in [1-3]
RandomForest [4] was used as sole classifier to establish the
predictive accuracy of the selected antibodies.

In this paper, we tackle a five-class problem distinguishing
Alzheimer’s Disease, Parkinson’s Disease, Multiple Sclerosis,
Breast Cancer and healthy controls. We present results of
different base learners, investigate the influence of feature
selection on classification performance and improve
classification performance further utilizing ensemble learning.

To allow the scientific community to reproduce the
experiments described in this work, we chose a publicly
available corpus and used the open-source software kit Weka1,

Patrick Kalmbach is with Hewlett Packard, Boeblingen, Germany (email:

Patrick.Kalmbach@live.com),

David Suendermann-Oeft is with ETS, San Francisco, USA. At the time

this work was conducted, he was with DHBW Stuttgart, Germany, (e-mail:

david@suendermann.com)
1 http://www.cs.waikato.ac/nz/ml/weka

which had previously been used successfully in context of
gene expression microarrays [5]. Required changes to handle
microarray data with Weka were implemented in Java. This
code is also made publicly available2.

The remainder of this paper is structured as follows: In
Section II, we briefly discuss the corpus and evaluation
methodology used in our study. In section III, we report
experimental results before drawing conclusions in Section
IV.

II. MATERIALS AND METHODS

A. Materials and Methods

The corpus used in this work was first described in a study
by Han et alters in [1] and is publicly available on the
MIAME-compliant NCBI GEO database [6] under the
accession number GSE29654. The corpus consists of
microarrays of 159 patients. The detailed composition of the
corpus is given in Table I.

TABLE I. DETAILED DEMOGRAPHIC INFORMATION OF

PATIENTS

Disease Samples
Age

Mean

Age

Range

Sex male

%

Parkinson’s Disease

Alzheimer’s Disease

Multiple Sclerosis

Breast Cancer

Older Controls

Younger Controls

29

50

10

30

20

20

74.0

78.5

46.0

46.7

57.7

24.7

53 to 88

61 to 97

27 to 59

32 to 54

51 to 86

19 to 30

55

40

30

0

100

65

The authors of [1] used ProtoArray v5.0 Human Protein
Microarrays from Invitrogen to identify autoantibodies in
human sera. Each microarray contained 9,486 unique human
protein antigens to identify autoantibodies. Proteins are
printed in duplicate providing 18,972 data points.

When analyzing the results with the freely available
analysis software ProtoArray Prospector v5.2 3 from
Invitrogen, only half of the data points are used [7]. We
decided to utilize all data points, therefore basically doubling
the corpus to 318 instances.

To not miss any information, we did not apply any feature
normalization method [8-9] as done in previous work. Instead,
we used the raw signal derived from the difference of
foreground and background intensity available from the
aforementioned database.

2 http://suendermann.com/diseaseClassification
3http://www.lifetechnologies.com/de/home/life-science/protein-expressio

n-and-analysis/biomarker-discovery/protoarray/resources/data-analysis.html

Multiclass Disease Identification Employing Functional Protein

Micorarrays

Patrick Kalmbach and David Suendermann-Oeft

mailto:authortwo@dmu.ac.uk

B. Weka

Weka [10] is a popular open-source toolbox for data
mining offering a large variety of state-of-the-art classifiers.

As the corpus is rather small in size, we decided to run
leave-one-(patient)-out cross-validation. In this technique, a
model is trained on all instances except for those of a given
patient. These instances are used for testing. This procedure is
repeated for all patients, and the results are finally
consolidated.

In our case, the training ser for each fold consists of 316
instances and the test set of two instances from one patient.
This separation by patient is crucial, since the results would
else be overoptimistic. Using this method no microarray data
from the individuals is in the training and test set at the same
time.

III. EXPERIMENTS

A. Default Options

Figure 1. Baseline of different classification schemes available in Weka

Baseline First, we investigated how different classifiers
behave on the problem at hand. To this end, we used 23 base
learners provided in the Weka and applied leave-one-out cross
validation, as described above. The results are depicted in

Figure 1. All 9,486 autoantibodies were considered, and the
default settings provided by Weka were used for each
classifier.

We found that function- and tree-based learners performed
best with a classification error rate of as low as 12%.
Rule-based learners did not perform as well with the lowest
classification error rate of 20%. Byesian and lazy learning
schemes performed worst with classification error rates
between 30% and 63%.

The poor results for lazy learning schemes, is somewhat
unexpected as those schemes often provide god performance.
Other popular learners like Bayes [11], Support Vector
Machines [12], C4.5 (J48) [13], Logistic Regression [14] or
JRip [15] perform well for this problem.

Feature Selection Inspired by previous work [1], we used
attribute selection by information gain in order to investigate
the influence of selecting different antibodies on the
performance. We used a ranker discarding all features whose
information gain is below a certain threshold. Results of these
experiments are shown in Figure 2.

Figure 2. Dependency of classifier performance on feature selection by

information gain of five exemplary base learners

The classification error of rule- and tree-based learners
remains relatively unaffected by information gain between 0
and 0.5 after which the error rate start to increase.
Function-based, lazy and Bayesian learners show a higher
sensitivity towards feature selection. However, most of them
have their minimal classification error between an information
gain of 0 and 0.75.

These results are reasonable as rule- and tree-based
learners of the use information gain themselves to decide
when to split or create rules. The more features are taken
away, however, the more this selection process is affected.

B. Parameter Tuning

SimpleLogistic SimpleLogistic is a classifier for building
linear logistic regression models. In order to fit the logistic
models, SimpleLogistic uses LogitBoost [16] with simple
regression functions as base learners. SimpleLogistic
produces the best baseline with a classification error of less
than 12%. Using a grid search, we tuned the beta value for
weight trimming (W) for LogitBoost and the parameter for
early stopping of LogitBoost based on heuristics (H). The
tested values are W = 0, 0.1, …, 0.9 where zero means no
weight trimming and H `0, 25, …, 100 where zero means no
heuristic stop. The results are depicted in Figure 3. The
number of LogitBoost iterations is cross-validated. However,
by setting the parameter H to a value greater than zero,
LogitBoost will terminate, if no new error minimum has been
found in the last H iterations.

Figure 3. Classification Error Rate for SimpleLogistic depending on

paramter W an H. As H has no influence on classification error rate, one line

is visible only

We found that parameter H did not have any effect at all on
the performance of SimpleLogistic. In contrast, using weight
trimming has a strong negative impact on the classification
error. Assumptions made in [14] hold not true for this specific
problem. In general, weight trimming can greatly improve
computation performance without loss of accuracy. This is
achieved by omitting attributes with very small weight

C. Ensemble Learning

Bagging Bagging [17] is a popular ensemble learning
scheme utilizing multiple versions of a single base learner
combining them by majority vote [10]. The implementation of
bagging we used in this work has two main parameters with
potential impact on classification performance. The first,
being the number of iterations (I) and the other the size of the
bag in percent of the training set. We used again a grid search
with I = 10, 20, …, 100 and bag size of P = 25, 50, …, 100.
The results are depicted in Figure 4.

The minimal classification error with 11.94% was
achieved with 100 iterations and a bag size of 50%.

Figure 4. Classification error rate for boosting depending on the number of

iterations I and bag size P

RandomForest In previous studies [1-3], excellent results
were achieved using RandomForest [4]. RandomForest is also
an ensemble learning scheme using RandomTree as base
learner. In our experiment, we grew an unlimited tree and
changed the number of attributes for the random selection
K = 0, 10, …, 100. The results are depicted in Figure 5.

Figure 5. Classification error rate for RandomForest iterating over the

number of RandomTrees I and number of features to consider in random

selection K

The minimal classification error we achieved was 16.04%
with I = 80 and K = 0. RandomForest thus performed worse
than bagging, boosting, and SimpleLogistic.

AdaBoostM1 AdaBoostM1 [18] is an ensemble learning
scheme utilizing boosting. Being related to bagging, boosting
concentrates on subsequent iterations of previously incorrectly
classified instances [10].

To get started, we used the default configuration provided
by Weka. Here, DecisionStump was used as base learner and

AdaBoostM1 run with ten iterations and weight pruning of
100. This combination resulted in a classification error of
50%.

Next we applied J48 as base learner. J48 is the
open-source implementation of the simple tree-based learner
C4.5. Therefore, J48 is more likely to produce alternating
results in presence of slight changes in the data set, as opposed
to more complex schemes like LMT, being an essential
property for applying Boosting.

In a first run we used AdaBoostM1 with different values
for weight threshold and number of iterations. We observed a
gradual decrease in classification error with increasing
threshold and number of iterations.

Going from this observation, we evaluated AdaBoostM1
with J48 with higher values for iterations and weight
threshold. Figure 6 shows the learning curves for this setup.
Using this approach, we could achieve a classification error of
8.81% which equals 28 wrongly classified instances or 14
patients.

Figure 6. Learning curves for AdaBoostM1 with J48 as base learner

IV. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how Alzheimer’s Disease,

Parkinson’s Disease, Multiple Sclerosis, Breast Cancer and

healthy controls can be distinguished with an accuracy of

more than 91% using boosting and unprocessed data from

functional protein microarrays. However, the corpus used in

this study is relatively small. Therefore, in order to verify the

presented findings, testing on a larger corpus would be

preferable. In addition, other ensemble learning schemes such

as Stacking could be evaluated in the future. Moreover, it

would be interesting to see how feature normalization such as

proCAT [8] or Robust Linear Regression [9] affects the

outcome of this classification problem.

REFERENCES

[1] M. Han, E. Nagele, C. DeMarshall, N. Acharya, and R. Nagele,

"Diagnosis of Parkinson’s disease based on disease-specific

autoantibody profiles in human sera, " PLoS ONE, vol. 7, no. 2.

[2] B. Ayoglu, A. Hggmark, M. Khademi, T. Olsson, M. Uhln, J. M.

Schwenk, and P. Nilsson, "Autoantibody profiling in multiple sclerosis

using arrays of human protein fragments, " vol. 12, no. 9, pp.

2657–2672, 2013.

[3] K. S. Anderson, S. Sibani, G. Wallstrom, J. Qiu, E. A. Mendoza, J.

Raphael, E. Hainsworth, W. R. Montor, J. Wong, J. G. Park, N. Lokko,

T. Logvinenko, N. Ramachandran, A. K. Godwin, J. Marks, P.

Engstrom, and J. LaBaer, "Protein microarray signature of autoantibody

biomarkers for the early detection of breast cancer, " Journal of

Proteome Research, vol. 10, no. 1, pp. 85–96, 2011.

[4] L. Breiman, "Random forests, " Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.

[5] J. E. Gewehr, M. Szugat, and R. Zimmer, „BioWeka–extending the

Weka framework for bioinformatics,“ vol. 23, no. 5, pp. 651–653,

2007.

[6] R. Edgar, M. Domrachev, and A. E. Lash, "Gene expression omnibus:

Ncbi gene expression and hybridization array data repository, " vol. 30,

no. 1, pp. 207–210, 2002.

[7] Immune Response Biomarker Profiling Toolbox v5.2, Invitrogen, April

2009.

[8] X. Zhu, M. Gerstein, and M. Snyder, "Procat: a data analysis approach

for protein microarrays, " Genome Biology, vol. 7, no. 11, p. R110,

2006.

[9] A. Sboner, A. Karpikov, G. Chen, M. Smith, M. Dawn, L. Freeman-

Cook, B. Schweitzer, and M. B. Gerstein, "Robust-linear-model

normalization to reduce technical variability in functional protein

microarrays, " Journal of Proteome Research, vol. 8, no. 12, pp.

5451–5464, 2009.

[10] I. Witten, E. Frank, and M. Hall, Data mining: practical machine

learning tools and techniques. Elsevier.

[11] M. Friedman and D. Geiger, "Bayesian network classifiers, " in

Machine Learning.

[12] J. Platt, "Fast training of support vector machines using sequential

minimal optimization, " in Advances in Kernel Methods – Support

Vector Learning

[13] R. Quinlan, "C4.5: Programs for Machine Learning. " Morgan

Kaufmann Publishers

[14] N. Landwehr, M. Hall, and E. Frank, „Logistic model trees.”

[15] W. W. Cohen, "Fast effective rule induction, " in Twelfth International

Conference on Machine Learning.

[16] J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistic regression:

a statistical view of boosting, " Stanford University, Tech. Rep., 1998.

[17] L. Breiman, "Bagging predictors, " Machine Learning, vol. 24, no. 2,

pp. 123–140, 1996.

[18] Y. Freund and R. Schapire, "Experiments with a new boosting

algorithm, " in Thirteenth International Conference on Machine

Learning, San Francisco, 1996, pp. 148–156

