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ABSTRACT
In speech recognition, vocal tract length normalization
(VTLN) is a well-studied technique for speaker normaliza-
tion. As cross-language voice conversion aims at the trans-
formation of a source speaker’s voice into that of a target
speaker using a different language, we want to investigate
whether VTLN is an appropriate method to adapt the voice
characteristics. After applying several conventional VTLN
warping functions, we extend the conventional piece-wise
linear function to several segments, allowing a more de-
tailed warping of the source spectrum. Experiments on
cross-language voice conversion are performed on three cor-
pora of two languages and both speaker genders.

1. INTRODUCTION

Vocal tract length normalization [1] tries to compensate for
the effect of speaker dependent vocal tract lengths by warp-
ing the frequency axis of the amplitude spectrum. In speech
recognition, VTLN aims at the normalization of a speaker’s
voice in order to remove individual speaker characteristics.

A similar task is voice conversion. It describes the mod-
ification of a source speaker’s voice such that it is perceived
to be spoken by a target speaker [2]. In this paper, we show
how VTLN can be applied to this task focusing on cross-
language voice conversion.

In Section 2, we delineate the concept of cross-language
voice conversion and describe how to find corresponding
speech segments respectively artificial phonetic classes in
the training material of source and target speaker. These
corresponding classes are used to estimate the parameters
of class-dependent VTLN warping functions.

Subsequently, in Section 3, we apply this training proce-
dure to conventional warping functions depending on only
one parameter.

Often, these conventional functions do not sufficiently
model the speakers’ characteristics. Therefore, we intro-
duce a piece-wise linear warping function consisting of sev-
eral linear segments. Another method to augment the num-
ber of parameters is the all-pass transform [12]. The greater

the parameter number is, the more carefully we must deal
with their practical estimation. All these considerations are
discussed in Section 4.

Since the parameter estimation for classes with only few
observations is very inaccurate and, besides, we do not want
the parameters to change abruptly from one class to another,
in Section 5, we introduce two parameter smoothing meth-
ods.

Finally, in Section 6, we present experimental results on
three German and English corpora.

2. VTLN-BASED CROSS-LANGUAGE VOICE
CONVERSION

2.1. Motivation

Over the last decade, a lot of scientific effort has been ex-
pended to realize a human vision from biblical times: to
build a speech-to-speech (S2S) translator. S2S translation
systems [3] combine almost every speech processing and
natural language processing application, as speech recogni-
tion, statistical machine translation, or speech synthesis. It
is obvious that sometimes a user of a S2S translator wants
his system to speak with his own voice, in particular, when
several persons utilize the translator simultaneously. Fur-
thermore, a S2S translation system must be able to cope
with a new user and rapidly adapt the utterances of the
speech synthesis standard speaker (source speakerS) to the
user’s voice (target speakerT ).

This voice adaptation is performed by the S2S trans-
lator’s voice conversion module which, in case of being
confronted with a new user, must be content with a small
amount of training data, namely with only some words, be-
cause the translation system is to react with minimum delay.
Having seen more data from the target speaker, we are able
to refine our models or our model’s parameters, respectively.

Most of the training procedures of state-of-the-art voice
conversion techniques require training data which have to be
the same utterances of both source and target speaker [4].
Besides, these utterances should feature a high degree of



Fig. 1. Cross-Language Voice Conversion for Speech-to-
Speech Translation.

natural time alignment and similar pitch contour [5]. How-
ever, these claims contradict the conditions of a S2S system
processing spontaneous speech of several unknown speak-
ers, and, of course, multiple languages. [4] and [6] report
cross-language voice conversion approaches but both expect
two bilingual speakers having long experience with the for-
eign language such that the above requirements for mono-
lingual voice conversion are fulfilled as well.

The concept ofgenuinecross-language voice conver-
sion we propose in [7] performs the complete parameter
training in operation phase usingT ’s utterances in language
f and those ofS in languagee. Output are the latter ut-
terances spoken byT usinge. Dealing with cross-language
voice conversion, one has to take into account that in a real-
world application we should search for ways to perform
parts of the training beforehand. At least, when we apply
cross-language voice conversion to S2S translation, we are
familiar with the standard speakerS of the speech synthesis
component, hence, we can execute a part of the parameter
training off-line. Besides, the training material is not lim-
ited to the sparse utterances ofS emitted during the trans-
lation process but can be extended to the whole database of
the speech synthesizer assuming a concatenative synthesis
system, v. Figure 1.

2.2. Automatic Segmentation and Mapping

As opposed to monolingual voice conversion or conven-
tional cross-language voice conversion described above, in
genuinecross-language voice conversion we do not possess
corresponding time frames of source and target speaker and,
furthermore, languagee andf generally use different pho-

neme sets. In [7], we investigate the following solution of
this lack.

At first, we subdivide speech material of speakerS and
T into KS respectivelyKT artificial phonetic classes. This
is done by clustering the frequency spectra of period-syn-
chronous frames obtained by a pitch tracker. For unvoiced
signal parts, pseudo periods are used. Now, for each source
classkS we determine the most similar target classk̂T (kS).
This class mapping is basis for an arbitrary statistical voice
conversion parameter training.

2.3. Statistical Voice Conversion Parameter Training

Let XI
1 = X1, . . . , XI be the spectra belonging to source

classkS and Y J
1 those of the mapped clasŝkT (kS), we

generally estimate the parameter vectorϑ by minimizing
the sum of the euclidean distances between all target class
spectra and transformed source class spectra. Here, we uti-
lize the spectral conversion functionFϑ depending on the
parameter vectorϑ.

ϑ = arg min
ϑ′

I∑

i=1

J∑

j=1

∫ π

ω=0

|Yj(ω)− Fϑ′(Xi, ω)|2 dω (1)

In Section 2.1, we have argued that for cross-language voice
conversion computational resources can be limited because
we have to perform a part of the parameter training in oper-
ation phase. In conjunction with a suitable smoothing tech-
nique, we often can neglect the variety of the classes’ obser-
vation spectra by introducing a mean approximation without
an essential effect on the voice conversion parameters.

ϑ = arg min
ϑ′

π∫

ω=0

∣∣Ȳ (ω)− Fϑ′(X̄, ω)
∣∣2 dω (2)

Here,X̄ and Ȳ are the source and target classes’ average
spectra.

3. WARPING FUNCTIONS WITH ONE
PARAMATER

In speech recognition, several VTLN warping functions
have been proposed whose parameters usually are limited
to one variable, the warping factorα. Established warping
functions are

• symmetric piece-wise linear function with two seg-
ments [8]

ω̃α(ω) =
{

αω : ω ≤ ω0

αω0 + π−αω0
π−ω0

(ω − ω0) : ω ≥ ω0

(3)

ω0 =

{
7
8π : α ≤ 1
7
8απ : α ≥ 1



• power function [9]

ω̃α(ω) =
(ω

π

)α

• quadratic function [10]

ω̃α(ω) = ω + α

(
ω

π
−

(ω

π

)2
)

• bilinear function [11]

z̃α(z) =
z − α

1− αz
with z = eiω (4)

In order to estimate the class dependent warping factorα,
we use Eqs. 1 or 2, where

Fα(X, ω) = X(ω̃α(ω)). (5)

4. WARPING FUNCTIONS WITH SEVERAL
PARAMETERS

4.1. Piece-Wise Linear Warping with Several Segments

One of the disadvantageous properties of the conventional
warping functions with one parameter is that the whole fre-
quency axis is always warped in the same direction, either
to lower or to higher frequencies. Consequently, these func-
tions are not able to model spectral conversions where cer-
tain parts of the axis move to higher frequencies, and other
parts to lower frequencies, or vice versa. Such functions
would require at least one inflection point and would cross
theω̃ = ω diagonal.

Applying the VTLN technique to voice conversion, we
want to use more exact models than in speech recognition,
i. e. warping functions with several parameters, to better
describe the individual characteristics of the speakers’ vocal
tracts.

Assuming there is an ideal warping function for a given
class pair(kS , k̂T ), an obvious model is the interpolation of
this function by several linear segments, as a consequence
from the simple two-segment linear warping, v. Eq. 3.

ω̃ω̃S
1
(ω) =





ω̃0,ω̃1(ω) for 0 ≤ ω ≤ 1
S+1 · π

...
...

ω̃ω̃s,ω̃s+1(ω) for s
S+1 · π ≤ ω ≤ s+1

S+1 · π
...

...
ω̃ω̃S ,π(ω) for S

S+1 · π ≤ ω ≤ π
(6)

ω̃ω̃′,ω̃′′(ω) = ω̃′ +
(

S + 1
π

· ω − s

)
· (ω̃′′ − ω̃′)

0 ≤ ω̃1 ≤ · · · ≤ ω̃S ≤ π. (7)

This formula describes a piece-wise linear functionω̃(ω)
starting at(0, 0), ending at(π, π), and connectingS points
whoseω values are equidistantly distributed. The corre-
spondingω̃s are the parameters of the warping function.
The resulting function is monotonous according to Eq. 7, as
we do not want parts of the frequency axis to be exchanged.
For an example, v. Figure 4.

4.2. VTLN with All-Pass Transform

As the piece-wise linear warping function with several seg-
ments, the all-pass transform [12] also deals with the claim
that we want more flexible warping functions by extending
the number of parameters. As opposed to the piece-wise
warping, the all-pass transform, in general, results in a non-
linear warping function.

In addition to the real warping factor−1 < α < 1,
a set of complex parameters is introduced:{βp, γp : p =
1, . . . , P} with |βp| < 1 and|γp| < 1.

The all-pass transform is defined as

z̃(z)=
z − α

1− αz

P∏
p=1

(
z − βp

1− β∗pz

z − β∗p
1− βpz

)(
1− γ∗pz

z − γp

1− γpz

z − γ∗p

)

with z = eiω.

It is obvious that forP = 0 respectivelyβp = γp = 0;
p = 1, . . . , P , this general all-pass transform formula passes
into the bilinear function, v. Eq. 4.

4.3. Practical Parameter Estimation

In general, augmenting the number of parameters, confronts
us with an increasing need of computation time. Particu-
larly, this is the case if the minimization of Eqs. 1 or 2 is per-
formed by calculating the distances for all possible param-
eter combinations concerning a certain resolution. This es-
timation method results in an exponential increase of com-
puting time in dependence on the number of considered pa-
rameters.

Viewing the definition of the piece-wise linear warping
function with several segments, cf. Eq. 6, we note that the
integrals used in Eqs. 1 and 2 can be rewritten as (also cp.
Eq. 5)

dω̃S
1

=

π∫

ω=0

∣∣∣Y (ω)−X(ω̃ω̃S
1
(ω))

∣∣∣
2

dω

=
S∑

s=0

s+1
S+1 ·π∫

ω= s
S+1 ·π

∣∣∣Y (ω)−X(ω̃ω̃s+1
s

(ω))
∣∣∣
2

dω .

This enables us to use dynamic programming for searching
the minimum distance and therewith the optimal parameter
vectorω̃S

1 .
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Fig. 2. Automatic Class Segmentation for the Word “Ari-
zona”.

Unfortunately, this simplification cannot be applied to
the all-pass transform, thus we are forced to find another ap-
propriate minimization technique. For instance, the gradient
method determines a local minimum of a multidimensional
function next to a given initial vector.

Since we search for theglobalminimum of the distance
function,ϑ, we have to ensure that the initial value is in the
next neighborhood because we often do not have a concave
function of the parametersα, βP

1 , γP
1 .

We expectϑ to be in the environment of the parame-
ter vectorϑ0 which results in the diagonal warping function
ω̃ = ω. Now, we obtain a new initial vectorϑ1 by deter-
mining its components using normally distributed random
numbers. Mean vector of this distribution isϑ0, the covari-
ance matrix should be diagonal if we expect the parameters
to be independent of each other. If the distance which re-
sults from a new run of the gradient method is smaller than
that for the initial vectorϑ0, we memorize it as the currently
best solution. This procedure is repeatedR times.

We notice that smaller variances lead faster to the global
minimum if we are sure that it is nearϑ0, otherwise the
variances should be increased. At any rate, each variance
greater than zero yieldsϑ for R →∞.

5. PARAMETER SMOOTHING

5.1. Iterative Integrating Smoothing

Basis of the cross-language voice conversion technique de-
lineated in this paper is the automatic class segmentation
and mapping described in Section 2.2. In Figure 2, we show
the time course of the word “Arizona” and the correspond-
ing classes forKS = 8.

Fig. 3. Iterative Integrating Smoothing for Warping Func-
tions with one Parameter.

To avoid that the class-dependent voice conversion pa-
rameters jump at the class boundaries causing distinctly au-
dible artifacts in the converted speech, we introduce an inte-
grating parameter smoothing which iteratively adapts a pa-
rameter vector by adding a weighted mean of the chronolog-
ically neighbored vectors. Figure 3 shows the effect of this
smoothing technique for 5, 50 and 5000 iterations using the
symmetric piece-wise warping function described in Eq. 3.
If the number of iterations approaches infinity, we obtain a
constant function over the time representing the mean pa-
rameter vector.

These considerations are applicable to the piece-wise
warping function with several segments as well. In Figure 4,
we show the results for 50 iterations. At the markt = 0.6s,
we exemplify this warping technique, formally defined in
Eq. 6. It is obvious that the particular property of warping
functions with several parameters – they can cross the diag-
onal – is also true for the piece-wise warping (this has been
discussed for the all-pass transform in Section 4.2).

5.2. Deviation Penalty

Viewing Figures 2 and 3, we note that for certain classes the
obtained parameter values highly deviate from the mean.
E. g. for kS = 7 we obtain anα less than 1, whereas the
particular voice conversion (female–male) should result in
values greater than 1. Considering the mean ofᾱ = 1.3,
the parameter values are to be controlled and, if necessary,
corrected towards the mean.

This is performed by applying the minimization Eqs. 1
or 2 a second time, having added a penalty term to the en-
closed integral. Both addends are normalized by their max-
imum and then weighted utilizing the real value0 ≤ λ ≤ 1
to adjust the penalty strength. Hence,λ = 1 does not in-



Fig. 4. Iterative Integrating Smoothing for Piece-Wise Warping with Nine Segments (S = 8) .

fluence the class parameters at all, whereasλ = 0 forces
all parameters to be equal to their meanϑ̄. An equilibrium
between both terms is to be aroundλ = 0.5.

In the following, we assumeX andY to have the unity
energyE0 in order to remove the dependence of the dis-
tances on the signal loudness.

dϑ = λ

π∫
ω=0

|Y (w)−X(ω̃ϑ(ω))|2 dω

max
X′,Y ′

π∫
ω=0

|Y ′(w)−X ′(ω)|2 dω

+(1− λ)

π∫
ω=0

(ω̃ϑ̄(ω)− ω̃ϑ(ω))2 dω

max
ϑ̄′,ϑ′

π∫
ω=0

(ω̃ϑ̄′(ω)− ω̃ϑ′(ω))2 dω

After calculating the maximal distance between arbitrary
complex spectraX ′ andY ′ respectively real warping func-
tionsϑ̄′ andϑ′, we obtain

dϑ =

π∫

ω=0

{
λ

4E0
|Y (ω)−X(ω̃ϑ(ω))|2

+
1− λ

π3
(ω̃ϑ̄(ω)− ω̃ϑ(ω))2

}
dω.

6. EXPERIMENTS

Several experiments have been performed to investigate the
properties of VTLN voice conversion with respect to the
warping functions discussed in this paper.

As argued in Section 2.1, we used three sparse corpora

to investigate our model of cross-language voice conver-
sion:

[A] 3 English sentences of a female speaker,

[B] 10 German sentences of a male speaker (poems),

[C] 3 German sentences of a male speaker (news).

In the following, we report results for three combinations of
these corpora:

• F2M: female [A] is converted to male [B],

• M2F: male [B] is converted to female [A],

• M2M: male [C] is converted to male [B].

As error measure, we use the normalized class average dis-
tance

dcad =

KS∑
k=1

π∫
ω=0

∣∣Ȳk(ω)− X̄k(ω̃ϑk
(ω))

∣∣2

4KSE0
.

Again, X̄ and Ȳ are spectra with unity energyE0, conse-
quently, we have0 ≤ dcad ≤ 1 (cp. Section 5.2).

In Table 1, we show results for warping functions with
one parameter (cf. Section 3). In the third row the results
for the trivial solutionω̃ = ω, i. e. no warping at all, is
displayed to assess the absolutedcad values.

We note that the presented warping techniques do not
essentially differ, but nevertheless, in our experiments, the
power function consistently produced the best outcomes.
The most significant effect was achieved for male-to-female
voice conversion which is due to the large differences of the



Table 1. Error Measure for Warping Functions with One
Parameter

class average distance[%]
warping function

F2M M2F M2M

no warping aa8.3aa aa13.2aa aa7.3aa
piece-wise linear 6.0 6.4 6.2
power 5.2 6.4 6.2
quadratic 5.4 7.8 6.2
bilinear 5.5 6.5 6.2

vocal tract. Concerning the above results, the other way
around is more complicated. This statement is also sup-
ported by our next experiments dealing with the piece-wise
warping with several segments, v. Table 2

Table 2. Error Measure for the Piece-Wise Warping Func-
tion with Several Segments

class average distance[%]
S

F2M M2F M2M

1 aa6.7aa aa7.6aa aa6.3aa
2 6.0 6.1 5.7
4 5.4 5.0 5.1
8 4.9 4.1 4.7
16 4.5 3.4 4.0
32 4.2 2.3 3.0
64 4.1 1.4 2.3

This table conspicuously demonstrates how the number
of free parameters affects the warping precision. IfS be-
comes the number of spectral lines of the compared spectra,
it passes into a variant of dynamic frequency warping with
certain constraints.

Nevertheless, subjective tests have shown, that exces-
sively increasing the number of free parameters, results in
an overfitting between source and target spectra and there-
with disturbs the naturalness of the output speech.

Future experiments are to investigate the consistency of
the above results on other corpora and compare the piece-
wise warping function with the all-pass transform consid-
ering equal numbers of free parameters. Furthermore, the
overfitting effect is to be demonstrated using an adequate
objective error criterion.

7. CONCLUSION

In this paper, the concept of cross-language voice conver-
sion has been adapted to be used for spontaneous speech-
to-speech translation. We show how vocal tract length nor-
malization, well-known from speech recognition, is used
as voice conversion technique. Four conventional VTLN
warping functions are faced two extended warping models,

the piece-wise warping function with several segments and
the all-pass transform. Furthermore, we delineate two pa-
rameter smoothing approaches and conclude with present-
ing experimental results on three corpora of two languages.
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