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ABSTRACT
This paper compares six classification algorithms for statis-
tical semantic analysis in the framework of a dialog system
for automated troubleshooting. The comparison is carried out
on large datasets, each consisting of over 100,000 utterances
(or 500,000 words) from two domains: Televison (TV) and
Internet (INT). In spite of the high number of classes (79 for
TV and 58 for INT), the best classifier (maximum entropy on
word bigrams) achieved more than 77% classification accu-
racy on the TV dataset and 81% on the INT dataset.

Index Terms— call classification, automated trouble shoot-
ing, large corpora

1. INTRODUCTION

State-of-the-art dialog systems for automated troubleshooth-
ing feature a very high complexity involving hundreds of caller-
system interactions and human-agent-like problem solvingbe-
haviour [1]. Due to the large variety of call reasons such sys-
tems are able to handle, the identification of the call reason
becomes an important issue. So far, most automated trou-
bleshooting solutions have used either dual-tone multi-frequency
signaling [2] or directed dialogs for call classification. Di-
rected dialogs are driven by multiple choice questions, in which
the user is prompted to respond with one from a small set of
responses. However, a directed dialog is not practical for the
task at hand for several reasons

• The number of call reasons, in the following referred to
asclasses, is much too large to be handled in a single
directed dialog. Due to short-term memory limitations,
it would be impossible to ask the caller to choose one
out of 79 distinct choices. Even a hierarchically struc-
tured directed dialog would prove unwieldy with such
a large number of classes.

• Callers often describe their problems using their own
words, which might not be covered by the rule-based
grammar typically used in conjunction with directed di-
alogs.

• Callers may not understand the terms used in a directed
dialog. For example in response to the prompt:Do you

corpus utterances classes
Gorin at al. [3] (1997) 010,000 15
Carroll and Carpenter [4] (1999) 003,753 23
Kuo and Lee [5] (2000) 004,000 23
Tur et al. [6] (2003) 021,953 49
Goel at al. [7] (2005) 033,274 35
TV 100,202 79
INT 137,570 58

Table 1. Comparison of corpora used in literature on call
classification and those used in the current study.

have a hardware, software, or configuration problem?,
they may respond unexpectedly (My CD-ROM does not
work!), ask for help or an operator, etc.

In the late 90s, Gorin et al. [3] proposed the use of a statistical
classifier to overcome these challenges. It is based on an open
prompt, allowing the callers to freely describe the problemin
their own words. For the current experiments, the utterances
are all taken from callers’ responses to the prompt:Please
describe the problem you’re having in one short sentence.

For training, a large number of utterances were collected
from the two troubleshooting domains: Television (TV) and
Internet (INT). The utterances were collected from customer
support calls to an automated dialog system. They were man-
ually transcribed and classified into one of several distinct
call reasons that are acted upon by the dialog system, such
asChannelMissingfor TV or CantLoginPasswordEmailfor
INT (for the corpus statistics, refer to Section 2.

Compared to previous studies reported in the literature,
both the amount of training data and the number of classes
in the current study are substantially larger. Table 1 shows
a breakdown for corpora used in other similar systems and
those presented in this study (TV and INT).

The training pairs consisting of the utterance and its corre-
sponding class are then used to train a statistical model, which
later, in the application phase, is used to determine the most
likely class for a new caller utterance. This paper compares
six algorithms for call classification:

• näıve Bayes,
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• bag of words matching + naı̈ve Bayes,

• näıve Bayes + boosting,

• decision trees,

• balanced winnow,

• maximum entropy.

These algorithms are briefly discussed in Section 2. Then, in
Section 3, the corpora used in this study and the experimental
framework are described, and detailed results of the experi-
ments are reported. Section 4 discusses the outcomes taking
the specifics of corpora and algorithms into account.

2. OVERVIEW OF CLASSIFIERS

This section provides a brief overview of the classificational-
gorithms that were compared. The first two methods (bag-of-
words matching and Naı̈ve Bayes) were implemented by the
authors. The next three were selected because they were three
top performing classifiers from Mallet, a Java-based machine
learning package tailored to natural language processing [8].
Finally, we implemented a boosting algorithm on several of
the classifiers.

2.1. Data Representation

For all of the classifiers (except for the bag-of-word match-
ing), each utterance was represented as a feature vector in
which there was one feature for each lexical type (distinct
word) in the dataset for the given domain. The values of the
features are the token counts for each word that is present in
the output of the ASR engine deployed in the automated sys-
tem. If a type is not represented, then the feature value is 0.
Since most utterances only contain a single instance of any
type, this method often results in binary-valued feature vec-
tors. Furthermore, the feature vectors are sparse, since, in
average, there are only about five types with non-zero counts
out of a feature vector with more than 4,000 components rep-
resenting the corpus vocabulary (see Table 2 for the corpus
characteristics).

As experience from other natural language processing tasks
like language modeling suggests, not only the presence or
pure counts of word should be taken into account, but also
contextual information. Therefore, we also included word bi-
grams and trigrams as features. This increased the number of
features as reported in Table 2.

2.2. Bag-of-Word Matching

As mentioned above, most of the utterances in the dataset are
quite short, with an average of 5.1 words per utterance. Fur-
thermore, due to the nature of the troubleshooting task, many
of the utterances recur frequently. As an extreme example of

this, over 50% of the utterances in a frequently occurring TV
class are instances of the same type. For such cases that have
been seen in the training data, the simplest classifier would
construct a rule mapping the test utterance to the class pro-
vided for the identical training utterance. We refer to thisas
matching. The existence of a large amount of annotated train-
ing data makes this approach viable for at least part of the
corpus.

In order to reduce redundant information and enable the
classifier to match a larger percentage of the test utterances,
we transformed utterance into their bag-of-word representa-
tion by performing the following steps:

• Stop words were removed according to a list including
38 function words.

• The remaining words were stemmed using the Porter
stemmer algorithm [9].

• Multiple occurances of words were eliminated.

• The order of the words was regularized by an alphabetic
sort.

2.3. Näıve Bayes

The goal of the Näıve Bayes classifier is to provide the most
likely class label,̂c, from a set of class labels,C, given an ut-
terance expressed by the word sequencewN

1 := w1, . . . , wN

ĉ = argmax
c∈C

p(c|wN

1 ). (1)

Using Bayes’ Rule, this can be rewritten as:

ĉ = argmax
c∈C

p(wN
1 |c)P (c)

P (wN
1 )

. (2)

Since the termp(wN
1 ) remanis constant, it can be removed

from Equation 2. Finally, the classifier uses the Naı̈ve Bayes
conditional independence assumption to determineP (wN

1 |c).
This assumes that the probability of the utterance given a class
is simply the product of the probabilities of each word in the
utterance given the class yielding

ĉ = argmax
c∈C

p(c)

N
∏

n=1

p(wn|c). (3)

Both the prior probability,p(c), and the conditional prob-
ability p(w|c) were estimated by using the maximum likeli-
hood estimate based on the training data. Laplacian smooth-
ing with a floor value of 0.1 was applied.

2.4. Balanced Winnow

Balanced Winnow is an online, mistake-driven learning algo-
rithm [10], [11]. The classifier proceeds by taking the dot
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product of the feature vectorx for test utterance and a weight
vectorω for each class:

ĉ = argmax
c∈C

x · ωc (4)

If ĉ is incorrect, the weight vector for the correct class
is updated by multiplying each component corresponding to
a non-zero feature in the feature vector by a constant1 + ǫ,
and the weight vector for the incorrect class by1 − ǫ, with
0 < ǫ ≪ 1. This procedure is conducted for multiple itera-
tions over the training data.

2.5. Maximum Entropy

The maximum entropy paradigm [12] expresses the probabil-
ity p(c|wN

1 ) introduced in Equation 1 by applying the follow-
ing multiplicative decomposition

p(c|wN

1 ) =

∏

n

α(c|wn)

∑

c′

∏

n

α(c′|wn)

=

∏

w

αN(w)(c|w)

∑

c′

∏

w

αN(w)(c|w)

=

exp

[

∑

w

N(w) log α(c|w)

]

∑

c′

exp

[

∑

w

N(w) log α(c|w)

] . (5)

Performing theargmax operation of Equation 1 ignoring the
terms which are constant with respect toc, yields

ĉ = argmax
c∈C

p(c|wN

1 )

= argmax
c∈C

∑

w

N(w) log α(c|w).

(6)

This expression includes the variables

• N(w), which is the count of a word type in the ut-
terance. The general principle of maximum entropy,
however, allows for arbitrary (binary, integer, or real-
valued) features to be used instead of the raw word
count. In this paper’s investigations, we used both word
counts and bigram counts as features.

• α(c|w) with α(c|w) ≥ 0 and
∑

c

α(c|w) = 1, which are

parameters depending on the classc and the particular
wordw. These parameters are estimated in training us-
ing algorithms like generalized iterative scaling [13] or
the Broyden-Fletcher-Goldfarb-Shanno [14, 15, 16, 17]
method, the latter being used in this study as it was ob-
served to be more efficient [18].

2.6. C4.5

C4.5 is a decision tree classifier [19]. The classifier constructs
a branching tree consisting of a set of features to test and the
most likely class given the decision. The feature to test at
each node is determined by calculating the maximum infor-
mation gain over all possible splits. The information gain for
splitting at a feature is defined as the difference in entropyof
the distribution before the splitH(D) and the weighted sum
of the entropies of the nodes after the split (for a split thathas
K possible outcomes):

IG = H(D) −
K

∑

k=1

|Dk|

|D|
× H(Dk) (7)

In order to make the classifier training computationally
tractable, feature selection was conducted first on the datasets.
The maximum number of features, which the algorithm could
handle in a reasonable amount of time (about 24 hours on a 3
GHz Intel Xeon processor and 2 GB of memory) on the full
dataset was determined to be 50. Two methods of feature se-
lection were used:χ2 and TFIDF [20]. Both produced similar
results; those reported below usedχ2 for feature selection for
C4.5.

2.7. Boosting

Boosting is an on-line learning algorithm in which the results
of several classifiers (weak learners) are combined, as a func-
tion of each classifier’s accuracy, to form a weighted major-
ity prediction rule. The boosting algorithm used in the cur-
rent experiments is AdaBoost.M2 (also implemented in Mal-
let), which is specificaly designed for multiclass classification
tasks. The boosted classifier’s decision is determined by the
equation (see [21] for details):

ĉ = argmax
c∈C

T
∑

t=1

(log
1

βt

)ht(x, c) (8)

This expression includes the variables:

• t = 1, 2, ..., T , a round of boosting in which the weight
vector over the weak learner is updated as a function of
each weak learner’s accuracy

• βt, a variable determined by the pseudo-loss of the hy-
pothesis

• ht, a hypothesis from the weak learner in the form of
a vectorX × C− > [0, 1] with a confidence score for
each class

3. EXPERIMENTS

In this section, we describe the characteristics of the auto-
matic troubleshooting corpora and report on the experimental
results of the classifier comparison.
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TV INT
training utterances 091,746 125,665
test utterances 008,456 011,905
classes 000,079 000,058
average words per utterance00005.1 00004.4
features (1grams) 004,125 004,475
features (1+2grams) 040,176 070,469
ASR word error rate 00031.0 00032.7

Table 2. Corpus statistics.
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Fig. 1. Frequency distribution of the classes.

3.1. Corpora

The classification tests were conducted on a 90 / 10 split of
each corpus into training and testing partitions. Table 2 shows
the number of utterances in the training and test partitionsfor
the full data sets.

The partitions were constucted such that the per-class dis-
tribution in each partition reflects the distribution in thecor-
pus as a whole, i.e. if a class contains 2% of the overall utter-
ances, then it will also contain 2% of the training and 2% of
the test utterances. This was done to ensure that none of the
classes would be omitted from the test set by a purely random
sampling (some of the least frequent classes in the TV dataset
contain fewer than 0.05% of the overall utterances).

This method of splitting the dataset was compared with
a 10-fold cross validation on the INT dataset using a purely
random 90 / 10 split for each iteration. The average perfor-
mance of the 10 rounds was identical to the performance on
the single dataset with the balanced 90 / 10 split (77.3%), thus
demonstrating that this method of partitioning the data hardly
influences the results.

Figure 1 shows how the utterances count per class sorted
by descending counts. The distribution is nearly Zipfian, ex-
cept for the fact that the most infrequent classes are too sparsely
represented.
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Fig. 2. MacroaveragedF1 measure as a function of total cov-
erage by the classes until that point.

3.2. Results

Tests were conducted on the datasets in Table 2 using all of
the classification methods described in Section 2. Additional
tests were conducted on smaller subsets of the TV corpus in
order to see how the performance for each classifier changes
with increased training data.

The accuracy is measured by overall percentage of cor-
rect classifications out of all test utterances. In general,the
performance per class is better for the classes that are better
represented in the datasets, as would be expected. The classes
that have extremely poor performance only make up a small
part of the dataset, as is shown in Figure 2 for the boosted
Näıve Bayes classifier. This figure plots theF1 measure [22]
as defined by

F1 =
2 · precision · recall

precision + recall
(9)

for each class, ordered by decreasing frequency. Thex-axis
displays the percentage of utterances in the corpus that are
covered by the classes until that point. They-axis displays
the macroaveragedF1 measure for those classes. For exam-
ple, the two most frequent classes in the TV corpus comprise
26.6% of the entire corpus, and they have an averageF1 of
0.89.

Figure 3 displays how the performance of the six classi-
fiers improves with increased amounts of training data. The
sizes of the training sets are approximately 1000, 2000, 5000,
10000, 20000, 50000, 100000 (the exact numbers differ slightly
due to the fact that per-class distributions were preserved). All
of these tests were performed on the test set of the TV corpus
as specified in Table 2. Table 3 shows the results for the TV
and INT corpora using the full train and test sets.
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Fig. 3. Classification accuracy on the TV corpus as a function
of amount of training data for the compared classifiers.

Classifier TV INT
Näıve Bayes 69.9 72.7
BOW + Näıve Bayes 74.1 75.5
C4.5 73.5 78.7
Boosted Näıve Bayes 74.9 77.3
Balanced Winnow 74.1 79.6
Maximum Entropy 77.2 81.2

Table 3. Comparison of the classification accuracy on full
training set for TV and INT corpora. BOW stands for bag-of-
word matching.

4. DISCUSSION

As the main outcome of the experiments reported in Figure 3
and Table 3, the performance of the maximum entropy clas-
sifier stands out. It consistently outperformed the competi-
tors in all our experiments including all sets of corpora and
n-gram order. This result agrees with experience from other
classification tasks in natural language processing such astext
categorization [23], part-of-speech tagging [24], or named en-
tity recognition [25].

Let us now compare the winner to our two personal fa-
vorites: bag of words matching and boosting.

.
Bag of Word Matching. As pointed out earlier, bag of words
matching does not cover all of the utterances, necessitating
the use of a back-up classifier. Table 4 shows the percent-
ages of test utterances, whose bag-of-words representation
has been seen in training. It also reports the classifiation ac-
curacy of the bag-of-words matching limited to the cases seen
in training.

Unfortunately, the bag-of-word matching accuracy does
not achieve 100% for the following drawbacks

Speech recognition errors (cf. Table 2) lead to erroneous

[%] TV INT
percentage of BOW seen in training 63.2 73.7
BOW accuracy on BOW data 88.3 85.1
maximum entropy accuracy on BOW data88.6 89.0

Table 4. Results of bag-of-word matching compared to max-
imum entropy.

TV INT
utterances 100,202 137,570
bags of word 039,057 037,197
ambiguous bags of word 001,023 000,724

Table 5. Corpus statistics on bags of words with ambiguous
classes.

bags of word and potentially wrong classes.
In spite of the large amount of training data used in this

study, there are more than 30% of the test utterances, whose
bag-of-word representation has not been seen in the training
data. Consequently, for this part of the data, another classifi-
cation algorithm has to be applied; in this paper, we decided
to use the Näıve Bayes classifier, described in Section 2.3, as
update solution, since both algorithms can be integrated very
easily.

The bag-of-word paradigm is based on the assumption
that there is a non-ambiguous mapping from a given bag of
word to a single class. In order to test this assumption, the
training utterances of the corpora were collapsed into bagsof
word and those cases were isolated, which mapped to more
than one class. Table 5 reports about the outcomes of this
test.

These non-ambiguous cases could be due to a weakness
of the bag-of-word approach, which assumes that only redun-
dancy is removed. Therefore, all these cases were given to a
human annotator for review. At the date of this publication,
this review process is still in progress, but a the number of al-
ready finished cases suggest that the vast majority of them is
due to inconsistent annotations. Only very few cases, where
two utterances belonging to different classes but resulting in
identical bags of words have been found. One example in-
volved the following two utterances from different classes:
“cancel a call” (Appointment) and “calling to cancel” (Ser-
viceCancel). Both of these utterances were compressed to the
bag of words “call cancel”, and thus the bag-of-word classi-
fier is not able to correctly distinguish them.

Interestingly, it turns out that the maximum entropy clas-
sifier outperformed bag of words matching even on the set
of utterances whose bags of word have been seen in train-
ing, as shown in Table 4. Maximum entropy obviously fea-
tures superior characteristics concerning data inconsistencies
and recognition errors. It also takes context into account:as
mentioned in Section 2.1, we ran experiments expanding un-
igrams to bigrams and trigrams extending the number of fea-
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tures used for the classification. Table 6 shows results on TV
data. This time, also a corpus variant comprising 50,000 ut-
terances was used, since the test framework suffered memory
problems when applying trigrams to the full 100,000 training
utterances.

Enhancing unigrams by bigrams pushs the performance
by 0.3 to 0.4%. Further extending then-gram order does not
seem to show a significant effect. At any rate, it seems that
context, and consequently word order, plays a certain role dis-
tinguishing between classes.

.
Boosting. Attempts were made to improve the classifier per-
formance through boosting. [26] demonstrates that boosting
improves the performance of a C4.5 classifier on a wide vari-
ety of datasets, and [27] shows improved performance specif-
ically for text categorization.

In our experiments, however, boosting only showed im-
proved performance on the complete datasets with a Naı̈ve
Bayes classifier. The best results were obtained with 550
rounds of boosting, and are reported in Figure 3.

For the other classifiers, boosting showed no improve-
ment, often even a slight decrease in performance when the
entire training set was used. For smaller datasets, all classi-
fiers did show some improvement with boosting. But when
the training corpus is large and the classifier is strong enough,
our results suggest that boosting is not helpful.

5. CONCLUSION

This paper reported on call classification experiments on large
corpora comparing six classification algorithms. Most re-
markable outcome is that the maximum entropy approach out-
performed all other classifiers on all data sets. Furthermore,
it turned out that boosting does not help on the investigated
large data sets for all classifiers except for Naı̈ve Bayes.
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