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ABSTRACT

Spoken language understanding (SLU) in dialog systems is
generally performed using a natural language understand-
ing (NLU) model based on the hypotheses produced by
an automatic speech recognition (ASR) system. However,
when new spoken dialog applications are built from scratch
in real user environments that often have sub-optimal au-
dio characteristics, ASR performance can suffer due to
factors such as the paucity of training data or a mismatch
between the training and test data. To address this issue,
this paper proposes an ASR-free, end-to-end (E2E) mod-
eling approach to SLU for a cloud-based, modular spoken
dialog system (SDS). We evaluate the effectiveness of our
approach on crowdsourced data collected from non-native
English speakers interacting with a conversational language
learning application. Experimental results show that our
approach is particularly promising in situations with low
ASR accuracy. It can further improve the performance of a
sophisticated CNN-based SLU system with more accurate
ASR hypotheses by fusing the scores from E2E system,
i.e., the overall accuracy of SLU is improved from 85.6%
to 86.5%.

Index Terms— end-to-end, spoken language under-
standing

1. INTRODUCTION

Recent advances in deep learning with big data have sig-
nificantly improved the performance of speech recognition,
language understanding, and machine translation, which
have in turn accelerated spoken dialog systems (SDSs) to
move towards offering a more natural, intuitive, robust
and effective interaction. However, when a cloud-based
SDS is bootstrapped [1, 2], especially for realistic interac-
tive speaking applications in the education domain, e.g.,
language learning, the system struggles to achieve high
performance. This is because it is difficult to obtain large
amounts of matched training data from real production
environments when we are developing new applications
from scratch, requiring them to be bootstrapped from rel-
atively cleaner, but mismatched data. And as one might
expect, spoken language understanding (SLU), which is
the interpretation of the meaning conveyed by speech utter-
ances, thereby playing a key role in deciding appropriate
system actions in SDSs, can be adversely affected by data

mismatch.

State-of-the-art SLU systems generally contain two
components: the automatic speech recognizer (ASR),
which decodes the input speech into text, and the natural
language understanding (NLU) module, that transforms the
ASR hypothesis into a concept or semantic label that can
drive subsequent SDS behavior. Nowadays, the two com-
ponents are typically based on statistical approaches trained
on a large amount of data with various machine learning
methods. Unlike NLU on written text, the efficiency of the
SLU largely depends on the performance of ASR and its
capability to handle errors and the vagaries of spontaneous
speech, e.g., hesitations, corrections, repetitions, and other
disfluencies.

Crowdsourcing techniques can allow us to rapidly and
cheaply obtain data for bootstrapping a SDS. But dialog
data crowdsourced from (i) non-native English speakers in
(ii) potentially adverse or uncontrolled audio environments
and (iii) collected over poor internet connections poses
a significant challenge to SLU due to its dependence on
ASR. We have observed a large variation in the quality of
recorded speech due to the difficulty in controlling partic-
ipants’ recording equipment and environment. The poor
audio quality could be either caused by wave distortions,
e.g., clipping occurs when an amplifier is overdriven, or
by packet loss resulting in dead silence when the internet
transmission is unstable, or by large amounts of background
noise resulting in low signal-to-noise ratio (SNR). Exac-
erbating this, as mentioned earlier, the non-native speech
collected by SDS-based language learning applications may
contain pronunciation errors, large numbers of disfluencies,
ungrammatical phrases, loan words, etc., which make the
ASR output even worse. Note that in such cases, human
experts also find it difficult to transcribe such poor-quality
non-native speech.

To address this issue, we propose an end-to-end model-
ing approach to SLU in a cloud-based SDS. The semantic
labels are directly predicted from SLU models by using au-
dio samples as inputs. Unlike two components used in the
conventional SLU system, an ASR is not needed in our ap-
proach. The paper is organized as follows: We first review
related work on SLU in SDS and the end-to-end approach
in speech and language processing; After that, we introduce
the open-source, cloud-based SDS we use to collect dialog
data, along with the specific job interview conversational



task we analyze; Next, we present our approach to SLU for
such an application together with an experiment design to
validate the approach; Finally, we analyze the experimen-
tal results and discuss implications for future research and
development.

2. RELATED WORK

Early attempts aimed at language understanding included
computer programs such as STUDENT [3] which was de-
veloped at MIT to read and solve word problems found
in high school algebra books and the chat-bot ELIZA [4]
which used simple pattern matching to carry on a conver-
sation on any topic. For most of the early language under-
standing systems, semantic parsers based on hand-crafted
rules were widely used. In the 1990s, several research
studies were carried out for the Airline Travel Information
System (ATIS) project. The initial systems developed for
this study used semantic rules to extract task specific in-
formation from slots in a frame. MIT’s TINA [5], CMU’s
Phoenix [6, 7] and SRI’s GEMINI [8] are examples of such
knowledge-based systems. Although these systems were
seen to perform very well, a major drawback of using hand-
crafted rules is that it is time-consuming and laborious in
terms of human effort to construct such rules. These rules
are highly specific to the applications they were designed
for and lack robustness to errors and irregularities. In real-
world spoken dialog applications, new words and unseen
speech utterances are encountered all the time thereby in-
creasing the vocabulary and corpus size, and hand-crafted
rules can result in misclassification for such utterances that
are not covered by the fixed-grammar rules.

To reduce the amount of human effort in building SLU
models, some statistical models were proposed such as
AT&T’s Chronus system [9] that applied a Markov model-
based approach where a set of concepts corresponding to
hidden states were used for semantic representation. Ma-
chine learning techniques were used in the BBN-HUM
model [10] that was developed for the ATIS task for un-
derstanding sentences and extracting their meaning with
respect to the preceding sentences. Some other statistical
approaches to semantic parsing include semantic classifi-
cation trees (SCTs) (decision trees with nodes representing
regular expressions) in which semantic rules are learned
automatically from the training corpus to build a natural
language understanding system [11] or the application of a
hidden vector state (HVS) model to hierarchical semantic
parsing [12]. Most state-of-the-art techniques involve the
use of deep learning for understanding based on transcrip-
tions or ASR hypothesis [13, 14, 15, 16].

Recently, several research studies addressed the model-
ing of speech signals using end-to-end (E2E) optimization,
which utilizes as little a prior knowledge as possible, e.g.,
using filter-bank features instead of MFCC [17] or directly
using speech waveform [18]. Multiple studies have demon-
strated that features automatically extracted by DNNs are
far superior to those produced by feature-engineering tech-
niques generally used in GMM-based acoustic modeling,
e.g. [19]. E2E speech recognition systems have yielded
competitive performance compared to conventional hybrid

Table 1: An example of different responses (along with
corresponding gold-standard semantic labels) to one par-
ticular dialog state (“mistake”) in the job interview task
that deals with how the interviewee would deal with a co-
worker’s mistake.

Imagine you saw your
coworker make a mistake.
Which do you think would
be better? To tell the co-
worker about the mistake
or to speak with your
manager?

Question

I would talk to the team
member and ask him to
rectify their mistake and
it is a better way of
resolving the issue.

Response

‘ Semantic Label ‘ coworker ‘

Speaking with the manager

Response is the best thing I guess.

’ Semantic Label ‘ manager ‘

Yeabh if it is a normal
issue, then I'll go and
discuss with the uh uh
coworker himself. If it is
something big, then I'll
go to manager and I will
discuss with him and

we will come to the
solution.

Response

’ Semantic Label ‘ depends ‘

Uh uh currently I am

Response staying in India. Eh.

’ Semantic Label ‘ nomatch ‘

DNN-HMM systems [20, 21, 22]. E2E learning also has
produced promising results on speaker verification [23],
language identification [24], emotion recognition [25] and
keyword search [26]. To the best of our knowledge, there
is few research work exploring ASR-free E2E modeling
for SLU, although several studies have tried to limit or
suppress the need of ASR for performing classification
[27, 28, 29, 30].

3. SPOKEN DIALOG SYSTEM AND TASK

We use an SDS that leverages different open-source compo-
nents to form a framework that is cloud-based, modular and
standards-compliant. For more details on the architectural
components, please refer to [31]. This framework is em-
ployed to develop conversational applications and collect
data using a crowdsourcing setup. In this iterative data col-
lection framework, the data logged to the database during
initial iterations is transcribed, annotated, rated, and finally



Table 2: Dialog state and semantic labels

Dialog State Semantic Labels

Mistake (MT) coworker, depends,
manager, nomatch
either, full time,

Part or Full (PF) nomatch, part time
both, group,

Self or Group (SG) nomatch.self

. yes, no,
Work Experience (WE) nomatch

used to update and refine the conversational task design and
models for speech recognition and spoken language under-
standing [1]. Since the targeted domain of the tasks in this
study is conversational practice for English language learn-
ers, we restricted the crowdsourcing user pool to non-native
speakers of English.

This study examines a conversational task developed
for English language learners that was designed to provide
speaking practice for non-native speakers of English in the
context of a simulated job interview. The conversation is
set up as a system-initiated dialog in which a representative
at a job placement agency interviews the language learner
about the type of job they are looking for and their quali-
fications. An example of dialog states in the job interview
task, including question, responses, and corresponding se-
mantic labels, is shown in Table 1. Table 2 comprehensively
lists the possible semantic labels associated with each dia-
log state. The ultimate aim of the task is to provide in-
teractive feedback to language learners about whether they
have demonstrated the linguistic skills necessary to provide
appropriate, intelligible responses to the interviewer’s ques-
tions and to complete the communicative task successfully.

4. END-TO-END MODELING OF SLU

The conventional ASR+NLU approach to SLU requires a
decent ASR system. Generally it needs over a hundred
hours of speech collected under real usage scenarios (along
with associated transcriptions for acoustic and language
modeling) to obtain a reasonable ASR system performance
[32]. This is an important factor to take into consideration
when one uses deep learning methods, the recognition per-
formance increases monotonically with more training data
[33]. Any new application can be continuously improved
by using a cycle of data collection. In this study, we inves-
tigate the potentials to build an ASR-free end-to-end model
for SLU.

The task of predicting semantic labels for spoken utter-
ances from the job interview conversations can be treated
as a semantic utterance classification task, which aims
at classifying a given utterance into one of M semantic
classes, ck € {ck,...,ch;}, where k is the dialog state
index. A straight-forward way to model semantic utter-
ance classification is to use a sequence-to-tag function,
where the input X is a sequence of speech feature vectors,
X = {x1,x2,...,x7}; x+ is the speech feature vector, e.g.,
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MEFCC, in t-th frame; T is the total number of frames in
an utterance, and output C' is the semantic label. Recurrent
Neural Networks (RNNs) can use their internal memory to
process an arbitrary length of inputs and are successfully
applied to solve a wide range of machine learning problems
that involve sequential data. We try to use RNNs to learn
a sequence-to-tag function for predicting semantic labels
from speech. Frame-level speech features are used as input
layer. The output layer is a softmax layer which contains
dialog-state-dependent semantic labels represented by a
one-hot vector. However, the preliminary results are not
promising. We conjecture that it is suffering from the lim-
ited training data. Speech acoustic features vary largely
from the factors, e.g., age, gender, dialectal background
and personal style. Even for the same speaker, the actual
values change from time to time due to different phone
sequences spoken. Therefore, a large number of spoken
utterance with semantic categories is required for training
to get a decent classifier.

We propose to use a compact representation for the ut-
terance in variable length and then employ the resultant
low-dimensional feature vector to do semantic label mod-
eling. Our approach is inspired by two popular techniques:
(i) pre-training [34, 35], which initializes DNN weights to a
better starting point than random initialization prior to back-
propagation (BP), which in turn helps facilitate a rapid con-
vergence of the BP process, and (ii) the auto-encoder, which
is used to learn a compact lower-dimensional feature repre-
sentation of a higher-dimensional input feature vector se-
quence.

Two approaches of compact audio feature representa-
tion by using unsupervised learning are explored in this
study. One is an RNN-based acoustic auto-encoder [26, 36]
as shown in Figure 1. It depicts the structure of a sequence-
to-sequence auto-encoder which contains two RNNs: En-
coder RNN and Decoder RNN. The acoustic feature vector
sequence {z1,Z2,...,z7} is mapped into a vector rep-
resentation in a fixed dimensionality V' by the Encoder
RNN, and the Decoder RNN reconstructs another sequence
{&1, &2, ..., &7} from vector V to minimize the reconstruc-
tion error, generally measured as the mean squared error
between X and X.

Another approach is to represent a variable length



speech utterance into a low-dimensional subspace based
on factor analysis. The ¢-th frame of an utterance, x:, is
sampled from the following distribution:
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where m; and >J; are the mean and covariance of the
j-th Gaussian component if a Gaussian mixture model
(GMM) is used to train a universal background model
(UBM). A GMM is an efficient method for modeling an
arbitary distribution of acoustic feature vectors in a unsuper-
vised manner using the EM algorithm. ~;; is the statistical
alignment result of the frame z¢, i.e., the posterior prob-
ability calculated from a UBM; T} is the total variability,
a low-rank rectangular matrix which is estimated by using
the EM algorithm; V' is the utterance-specific standard nor-
mal distributed latent vector obtained by using maximum a
posterior (MAP) estimation.

Transfer learning or multi-task learning [37] can ex-
ploit commonalities between the training data of different
learning tasks so as to transfer learned knowledge from one
to another. We use multi-task learning to the semantic ut-
terance classification by assuming each dialog state as one
task. The schematic diagram of our approach is shown in
Figure 2 where the input layer is the fixed-dimensional vec-
tor V' output from either RNN encoder or factor analysis as
the representation of variable length acoustic feature vec-
tor sequence and output layer is the softmax layer with K
one-hot vectors (each vector represents one dialog state).
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Fig. 2: Transfer learning with feedforward NN

5. EXPERIMENTS

Our ASR-free E2E modeling approach is evaluated in a
spoken-dialog-based language learning application by com-
paring with the conventional approach of combining ASR
and NLU.

5.1. Corpora

The application collected spoken dialog data via crowd-
sourcing by interacting with non-native interlocutors in a
job interview task. The dialog state and the correspond-
ing semantic labels are shown in Table 2. The collected
dialog corpus consists of 4,778 utterances spoken by 1,179
speakers. 4,191 utterances are used as a training set and
the rest of 586 utterances are used as a testing set. 200
utterances randomly selected from the corpus are used to
manually check the audio quality by reading the waveform

and spectrogram together with listening to the sound. We
found the percentage of labels for bad quality (perceptibly
clipping distortion, packet loss or large background noise),
no voice and good quality are 62.5%, 8.5% and 29%, sepa-
rately. The quality of transcriptions is also checked by Lev-
enstein distance between the transcriptions from different
transcribers for the same utterance, i.e., calculating word er-
ror rate (WER) by assuming one transcription is reference
and another one is recognition hypotheses. It shows that the
average inter-transcriber WER is 38.3% measured on 1,004
utterances/10,288 tokens. This corpus is hereafter referred
to as the job interview task (JIT) corpus.

Two corpora are used to build our ASR system. One
is drawn from a large-scale global assessment of English
proficiency, which measures a non-native speaker’s abil-
ity to use and understand English at the university level.
The speaking tasks in this test elicit monologues of 45 or
60 seconds in duration; example tasks include expressing
an opinion on a familiar topic or summarizing information
presented in a lecture. It contains over 800 hours of non-
native spontaneous speech covering over 100 L1s (native
languages) across 8,700 speakers. This corpus is hereafter
referred to as the non-native speech (NNS) corpus.

Another one is collected by our SDS via crowdsourc-
ing for different spoken dialog based applications. Job in-
terview task is one of the tasks based on language learning
application. This corpus is collected under realistic usage
scenarios. The acoustic environments and speaking styles
were matched with the data of job interview task. It con-
tains 41,185 utterances (roughly 50 hours). This corpus is
hereafter referred to as the SDS corpus.

5.2. ASR+NLU

ASR systems are constructed by using the tools from Kaldi
[38]. A GMM-HMM is first trained to obtain senones (tied
tri-phone states) and the corresponding aligned frames for
DNN training. The input feature vectors used to train the
GMM-HMM contain 13-dimensional MFCCs and their
first and second derivatives. Contextual dependent phones,
tri-phones, are modeled by 3-state HMMs and the pdf of
each state is represented by a mixture of 8 Gaussian compo-
nents. The splices of 9 frames (4 on each side of the current
frame) are projected down to 40-dimensional vectors by
linear discriminant analysis (LDA), together with maxi-
mum likelihood linear transform (MLLT), and then used
to train the GMM-HMM by using maximum likelihood
estimation. Concatenated MFCC features and i-vector fea-
tures, which is a promising approach to speaker adaptation
for speech recognition, are used for DNN training. The
input features stacked over a 15 frame window (7 frames to
either side of the center frame for which the prediction is
made) are used as the input layer of DNN. The output layer
of the DNN consists of the senones of the HMM obtained
by decision-tree based clustering. The input and output
feature pairs are obtained by frame alignment for senones
with the GMM-HMM. The DNN has 5 hidden layers, and
each layer contains 1,024 nodes. The Sigmoid activation
function is used for all hidden layers. All the parame-
ters of the DNN are firstly initialized by pre-training, then



trained by optimizing the cross-entropy function through
BP, and finally refined by sequence-discriminative training,
state-level minimum Bayes risk (sMBR).

The Bag of Words model is used as a feature for train-
ing NLU. In this model, a text string (recognized hypothesis
sequence) is represented as a vector based on the occurrence
of each word. Dialog state dependent models are trained to
perform multi-class classification of Bag of Words features
using decision tree classifier. Apart from the conventional
NLU method, the approach of using convolutional neural
networks (CNNs) is also investigated in this study. The in-
put tokenized text string is firstly converted to a 2D tensor
with the shape (maximum length of word * the dimension
of word-embedding), and then fed into a 1D convolution
network with multipe filters, finally the maximum values
from all filters via max pooling are formalized as a vec-
tor to predict the sematic labels by softmax output layer.
The CNN is constructed using the Keras Python package'
and the structure of CNN is configured as follows: 300-dim
word embedding vectors trained from Google news; the rec-
tified linear unit (ReLU) acitivation function and dropout
with (p=0.5); categorical cross-entropy loss function and
Adadelta optimizer used in the training.

5.3. ASR-free E2E

To overcome vanishing gradient problem occurred in RNN-
based machine learning, long short-term memory (LSTM)
[39] RNN is used for RNN encoder-decoder. The input fea-
tures to the LSTM-RNN is 13-dim static MFCCs without
delta features and stacked frame window since RNN ar-
chitecture already captures the long-term temporal depen-
dencies between the sequential events. The silences at the
beginning and ending of utterances are deleted through an
energy-based voice activity detection (VAD) method. A two
layer stacked LSTM is employed. The number of LSTM
cell is 640. We unfolded both encoder and decoder RNN for
10 seconds or 1,000 time steps. 10 seconds is the median
length of utterances in our corpus. All feature sequences are
either padded or downsampled to make their length equal to
1,000 time steps. A linear layer with 400 nodes, i.e., the di-
mension of V in the Figure 1 is 400, is used to compute
the embedding from the final hidden layer of the encoder
RNN. A back-propagation through time (BPTT) learning
algorithm is used to train LSTM-RNN parameters.

The acoustic features used for factor analysis contain
13 dimensional MFCCs along with their first and sec-
ond derivatives. Non-speech segments within utterances
were deleted through the same VAD method used in auto-
encoder. Utterance-based cepstral mean normalization was
performed on the acoustic feature vectors. A GMM with
1,024 components and a full covariance matrix was trained
as the UBM. To make a fair comparison to LSTM-RNN
encoder-decoder based feature representation, the same di-
mensional latent vector, i.e., 400-dim V' used in Equation
1, is extracted from T-matrix trained by EM algorithm with
the training set.

Two hidden layers, each layer with 128 nodes, are used
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for multitask learning with feedforward NN. Input layer of
NN is 400-dim V' and output layer of NN has 15 nodes sep-
arated by four tasks. All parameters of NN are trained by
optimizing cross-entropy function through BP. The param-
eters in hidden layers are updated by using all data in the
training set of JIT corpus while the corresponding dialog
state dependent data is used to update the parameters in the
top layer of NN.

5.4. Fusion of ASR-free E2E system and ASR+NLU
system

ASR-free E2E system predicts the semantic labels from
low-level raw acoustic features while ASR+NLU system
predict the semantic labels from high-level word hypothe-
ses. These two systems can compensate for each other.
We adopt score-level fusion by using the semantic label
posterior outputs generated from two neural networks as
the input features to a support vector classifier to predict
the semantic labels again.

5.5. Experimental results and analysis

We employ WER and prediction accuracy to evaluate the
performance of ASR and SLU on the testing set of JIT cor-
pus. Our proposed ASR-free E2E approach does not require
any transcriptions from the three corpora mentioned in Sec-
tion 5.1. The acoustic features extracted from NNS and
SDS corpora are used to train LSTM-RNN auto-encoder
and the GMM for factor analysis in the sense of unsuper-
vised learning. The preliminary results show that the per-
formance of LSTM-RNN and factor analysis has no signif-
icant difference regarding the extraction of compact repre-
sentation V' from variable length of utterance in our tasks.
V' extracted from factor analysis slightly outperforms that
extracted from LSTM-RNN. So we show its results as the
results of ASR-free E2E approach hereafter.

The performance of different ASR systems, in terms
of WER, on the testing set of JIT corpus is shown in Ta-
ble 3. The WERSs are broken down by dialog state as well
as those of overall (All) and the reference (Ref), which are
tested on the matched data sets. The state-of-the-art DNN-
based ASR trained on the Fisher corpus [40] using Kaldi
can achieve 22.2% WER on its own testing set [41]. Al-
though the Fisher corpus is a collection of conversational
telephone speech, it still has a significant mismatch with the
speech collected by SDS and results in a very high WER.
The DNN-based ASR system with i-Vector based speaker
adaptation technology trained on the NNS corpus (which is
also a collection of non-native speakers’ speech), can obtain
the WERs of 18.5% and 23.3% on monologue and dialogue
data sets respectively (using LM interpolation technology to
compensate for the speaking style difference across tasks)
[42]. However, when it is applied to recognize the data col-
lected by SDS, the WER is degraded to 55.5% even if we
use the transcriptions from the training set of the JIT cor-
pus for language model adaptation. Using data collected by
SDS or combining NNS corpus with SDS corpus can sig-
nificantly improve the performance of ASR, i.e., the WERs
on JIT testing set are reduced to 49.4% and 43.5%, respec-
tively. While this is still a very large WER value, we should



Table 3: WER(%) of ASR systems built with different corpora

| Dialog State | PF | WE | SG | MT | Al | Ref |
| Fisher | 86.4 | 88.8 | 842 | 90.9 | 88.1 | 222 |
| NNS | 54.3 | 62.6 | 52.0 | 54.8 | 55.5 | 185 \
| sDs | 354 | 55.8 | 45.0 | 55.1 | 49.4 | N/A |
| NNS+SDS | 358 | 50.1 | 395 | 46.1 | 435 | N/A |
Table 4: Accuracy(%) of different SLU systems
| Dialog State | PF | WE | sG | MT | All |
| E2E (JIT) | 56.3 | 794 | 537 | 754 | 64.1 |
| E2E (NNS) | 62.3 | 81.2 | 54.1 | 76.4 | 66.7 |
| E2E (NNS+SDS) | 63.0 | 82.4 | 54.9 | 76.8 | 67.4 |
| ASR+NLU (NNS), DT+BW | 64.6 | 755 | 634 | 725 | 68.0 |
| ASR+NLU (SDS), DT+BW | 79.0 | 87.3 | 59.2 | 754 | 74.0 |
| ASR+NLU (NNS+SDS), DT+BW | 81.8 | 873 | 67.1 | 775 | 77.6 |
| ASR+NLU (Transcription), DT+BW | 82.9 | 922 | 579 | 53.6 | 70.6 |
| ASR+NLU (NNS+SDS), CNN | 89.0 | 91.2 | 79.3 | 84.8 | 85.6 |
| Fusion (CNN, E2E)) | 89.0 | 94.1 | 79.9 | 855 | 865 |
| Majority Vote | 53.6 | 794 | 45.7 | 70.3 | 59.8 |
contexualize this result in light of the fact that the average ASR+NLU (NNS).

inter-transcriber WER is also quite large at 38.3 %. Re-
ducing both the ASR and inter-transcriber WERs for such
data are crucial to improving system performance in real-
world environmental conditions and usage scenarios, and
pose an interesting challenge to the speech processing re-
search community going forward.

Table 4 shows the performance of SLU in terms of se-
mantic prediction accuracy from different systems. The cor-
pora in the bracket for E2E systems indicate the corpora
used to train total varibility matrix, which is employed to
project the variable length utterance to fixed length feature
vector V. Our E2E approach performs much better than the
majority vote baseline, i.e., the accuracy is improved from
59.8% to 64.1% and there is no degradation for dialog state-
dependent performance. SDS and NNS corpora can cover
large amount of acoustic variations and V' extractor trained
on them can yield superior discrimination for semantic clas-
sification. The overall accuracy of E2E (NNS+SDS) is im-
proved by 3.3%, comparing with that of E2E (JIT), where
the V' extractor is trained on JIT corpus, and the dialog state
of PF (Part or Full) achieves the largest gains among the
four dialog states, i.e., the accuracy is improved by 6.7%.

The SLU performance of conventional ASR+NLU sys-
tems are also shown in Table 4. The corpora in the bracket
for ASR+NLU systems indicate the corpora used for build-
ing ASR system. Clearly, the observed trend is that the
lower the ASR WER, the higher the accuracy of the SLU.
It is interesting that the SLU trained on transcription does
not be able to outperform the SLU trained on the hypoth-
esis produced by ASR system. We suspect that it might
be caused by the inconsistency and the ambiguity present
in the human transcriptions we commissioned. The E2E
SLU system of E2E (NNS), which doesn’t require any tran-
scription for modeling and ASR system for transcribing the
spoken utterance into text, can be on par with the system of

The decision tree classifier and the Bag of Words fea-
tures (DT+BW) are used as the conventional NLU in this
study due to the latency issue, which requires a fast re-
sponse in a cloud-based dialog system. Following our re-
search curiosity, we tried CNN-based semantic utterance
classification approach and fused it with ASR-free E2E ap-
proach. The experimental results show that the semantic la-
bel prediction accuracy can be significantly improved, i.e.,
the overall accuracy is improved from 77.6% to 85.6%, by
CNN approach, and the score-level fusion by using posteri-
ors output from these two approaches can further improve
the accuracy from 85.6% to 86.5%.

6. CONCLUSIONS

In this paper, we developed an automatic speech recogni-
tion (ASR)-free end-to-end spoken language understanding
(SLU) module for a job interview-based language learning
dialog application. Given an utterance, we first projected
a variable-length sequence of acoustic feature vectors onto
a low-dimensional fixed-length vector and then fed the re-
sulted vector into a feedforward neural network trained in
the sense of transfer learning to predict its semantic cate-
gory. The evaluation results show that our SLU approach of
directly predicting semantic labels from speech is a promis-
ing alternative to traditional methods when a decent ASR
system for more realistic, noisy usage scenarios is unavail-
able. In addition, since no ASR is required, we found the
training time and semantic decoding time of our proposed
approach to be much faster than conventional approaches.
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