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ABSTRACT MOSg MOSg
Applying a recentl resented text-independent speech (quality) | (similarity)
pping y P p P text-dependent 3.3 2.4

alignment technique based on unit selection to the train-
ing of a voice conversion system suggested that the more
training data was available, the less speaker-specific-info
mation was learned. This paradoxical effect contradiats th
experience we have from other corpus-based applications agap|e 1. Results of a subjective evaluation on the applica-
speech recognition, synthesis or translation. There,éhe p  {jon of speech alignment to voice conversion: overall sheec

formance usually gains with increasing amount of data. In quality (MOS,) and similarity to the target (MQS
this paper, we investigate this paradox by means of objec-

tive tests and derive a mathematical model of the underlying

text-independent 3.5 2.0
source voice 4.7 1.6

stochastic process. and similarity to the target, a mean opinion score [8] on a
five-point scale (1 for bad to 5 for excellent) was applied.
1. INTRODUCTION As informal listening tests suggested, both effects, tted-qu

ity boost and the similarity score loss, increased with in-
In several speech processing applications (e.g. in speecltreasing amount of training data. This paper is to study this
recognition [1], speaker identification [2], or speech data paradox focusing on the similarity effect, which can be de-
mining [3, 4]), we have to find a time alignment between scribed by objective criteria, rather than the speech tyali
speech samples, usually generated by different speakerswvhose objective investigation is still a hard problem [9].
Mainly, the texts underlying the compared speech samples
is identical, which allows for applying dynamic time warp-
ing [1] to the problem. If the underlying text is known, 2. TEXT-INDEPENDENT SPEECH ALIGNMENT
forced alignment [5] can be performed, which may lead to BASED ON UNIT SELECTION
more accurate results.
However, certain applications require the alignment of ut- We consider two arbitrary speech samples to be aligned. At
terances, which are not parallel. Here, we face the text-first, they are broken down into framesNow, the frames
independent alignment task. Recently, we presented a techare encoded leading to two sequences of feature véctors
nique based on unit selection, which was used for text-inde-representing source and target speegh,andy;" . To per-
pendent voice conversion training [6] and later extended to form the alignment, from the latter, vectors are to be se-
cross-language voice conversion [7]. lected and joined to a sequengg that optimally corre-
When compared to text-dependent alignment (dynamic timeSPonds to the source sequence. This is done by taking two
warping), the achieved speech quality of the voice-comdert ~ Criteria into account:
speech was mproyed by means of the novel technique, In our study, we utilized pitch-synchronous time frames poediby
whereas the similarity to the target speaker decreased. Tafhe Praat tool [10], since this allows for using standardipinodification
ble 1 shows the results of a subjective evaluation reportedtechniques to change prosodical properties of speech ifrahework of

in [7]. As common metrics, for both overall speech quality Vvoice conversion. However, all the following consideratialso apply to
constant frame lengths as mostly used in speech recognition.

This work has been partially funded by the European Unioreuttte 2Here, we use line spectral frequencies; in other applinafimne
integrated project TC-Star - Technology and Corpora foregpeo Speech would certainly prefer other types as mel frequency cepsuwefficients
Translation -ht t p: // www. t c- star. org. or linear predictive coefficients, cf. [11].
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Fig. 1. Text-independent speech alignment: average dis- Fig. 2. Special case = 1.

tance between corresponding source and target feature vec-
tors d depending on the amount of data and the trade-off

arameterv. . .
P the aligned speech samples. We claimed that the more data

was available, the less speaker-specific information doeild
e The distance between source and corresponding tarextracted for the application to voice conversion. An expla
get featurest@rget cos} is minimum (optimal corre-  nation of this effect is that the units, which are selected to
spondence). minimize the Euclidean distance to the target become more
and more similar to the latter, the more data is available to
e The distance to the neighbors of the corresponding geject from.
target feature vectoconcatenation coyts minimum To investigate this effect, we want to use the mean Euclidean

(optimal naturalness). This criterion is supposed 10 gistance between the aligned feature vector sequences as an
select naturally smooth segmehii®m the target fea- objective measure:

ture vector sequenag”.
M

. . . 1 B
Mostly, these optima do not coincide, and we must get by d= — Z S (G — m) -
with a compromise between both: We search for the mini- M =
mum of the weighted sum of target and concatenation cost
for each source feature vector: Now, we want to look at the dependence of the increasing

similarity, i.e. decreasing value, on the amount of data
M . available. In doing so, we also have to take the trade-off
Y1 :argzﬁnmz{O‘S(ym_x’”)+(1_0‘)5(ym—1_ym)}' parametera, see Eq. 1 into account. We conducted ex-
boomel 1) periments using the evaluation corpus of the project TC-
Star [13], which consists of about 10 minutes of speech of
two female and two male British English voices. Indepen-
S(w) = vVu'w ) dent of the voice combinations to be aligned, we got very
similar outcomes. As an example, we display the results
and0 < « < 1is aweightinfluencing the trade-off between of a female-male voice combination in Figure 1 in double
target and concatenation cost. logarithmic representation. We observe that independent o
the trade-off parameter, the values ofl almost constantly
decreast To simplify matters, in the following, we look at
the special case = 1, the respective diagram is shown in
Figure 2.
As already argued in Section 1, we want to limit the investi- FOr the considered amounts of data, our test samples are

gations on the speech alignment paradox to the similarity of @/most located on a straight line in double logarithmic rep-
resentation. Consequently, the relation betwéandt can

M

Here,S(w) is the Euclidean distance

3. EXPERIMENTAL EVIDENCE OF THE SPEECH
ALIGNMENT PARADOX

Sor units that is, where the ternunit selectioncomes from. This
paradigm is well-known from concatenative speech synshegere op- 4except fora = 0, which does not lead to a useful alignment, since no
timal speech units are selected and concatenated, cf. [12]. target costs are considered




be approximated 5y t disk space
_ 5.6 174 kB
logd =c—blogt with b>0; 900s =15min | 27 MB

42-10*s=11.7h | 1.3GB
2.0-10s=122.8d | 59 GB
32-10s=10.3a | 9.2 TB

exponentiation yields

oo
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N o1

d = ecblost — geelost™ — g1=b  ith a,b>0. (3)

If we assume the validity of Eq. 3 also for amounts of data

beyond the experiment's scope, we get the limit Table 2. Required amount of data)(for certain degrees of

similarity (d) and the corresponding hard disk space neces-
lim d = lim at™*=0. 4) sary for storing a 6kHz/16bit PCM version of the data

t—oo t—oo

This means, for very large amounts of data, the aligned | )

speech samples become very similar to each other (for thd€istics are very often described by means of the Gaus-
limit case even identical), which provides evidence for the Sian mixture model —in literature, we find applications of
speech alignment paradox. Unfortunately, the speech-align this model to speech recognition [14], language identifica-
ment algorithm based on unit selection is very computation- ion [15], voice conversion [16], speaker recognition [17]
ally expensive (cf. [7]); to process 400 seconds of speech,Speak'ng rate estimation [18], and gender classificatig] [1

the computation took more than 80 hours on a 3GHz Inte| @nd more. _ _ _
Xeon machine. Thus, currently, we are not able to mas- The success of the Gaussian mixture model in these speech

sively increase the amount of data. This is the main reasonProcessing fields also suggests its application to the fives

for describing the paradox by mathematical means as donéJ@tion of the speech alignment paradox.
in the next section. In order to keep things manageable, we strongly reduce the

degrees of freedom for our first investigations as follows:

4, TOWARDSA MATHEMATICAL PROOF OF THE e \We set the number of Gaussian mixture densities to
SPEECH ALIGNMENT PARADOX K =16,

Although the emperical investigations of Section 3 were e We reduce the dimensionality of the feature vectors
confirmed by several experimental cycles, doubts arose on toD =1 (wl.o.g.).

the validity of the limit value shown in Eq. 4, as it could be
interpreted as follows:

If thereisenough speech data available, an arbitrary ut-
terance of an arbitrary voice can be produced only by
selecting and concatenating units from this data. o
However, the crucial point in the statement is the word 42 TheA-Priori Alignment

enough Applying the parameters = 6.8 andb = 0.18 de-  \yhen we have a look at the speech samples without per-
termined on the data of Figure 2 to Eq. 3, we estimated theforming any alignment, we can determine an a-priori value

required amount of data for several degrees of similarity, ¢ ¢5; the mean vector distance the expected valug, (d)”.

Table 2. We see that the amount of necessary data extremelye |atter is the expected distance between the two normally
grows when the mean distance between source and alignegdistributed random vectorsandy

target feature vectors becomes smaller and soon exceeds the

limits of the technical possible. x

Nonetheless, since the validity of the statement phrased Ei(d) = / Ei(d|x)N (x|py, 0)dx | (5)
above could be of high interest to the speech processing
community, in the following, we will investigate the align-
ment technique’s behavior for very large amounts of data by where E; (d|z) is the expected value af if z is fixed and
mathematical means. N (x|u,, o) is the probability density function of a normal

e \We assume identical covariance matrices for the fea-
ture vector sequences to be aligned, i.e.,ffoe 1,
we have the standard deviatien

— 00

SHence, for these considerations, there is no need for ubmgerm
4.1. Speech asa Mixture of Gaussians mixturewhen referring to the model. Interestingly, in particulapkga-
tions to voice conversion, it turns out that the optimal ckdior K is
As introduced in Section 2, we describe the processed speeciinall anyway: [20] reported = 6, in [21] we find K = 4, and in [22]
by sequences of feature vectors, whose statistical characm:? even go down td< = 1 for particular cases of text-independent speech
alignment.
5in the following equations, we use the normalized time- 2 to avoid “The subindex 1 is due to the fact that this expected value jreial
confusion case of that described in Section 4.3.




distribution. In the following, we use th&tandardnormal
distribution

and modify Eq. 5 accordingly

- i]o El(d|z)f<w> dr.  (6)
Now, we calculate the expected valueddf z is fixed
(dle) 7 o=l (11 ) )
= ;_4 @ 1( L5 ) dy

() ()]
Sl e (0]
zzaf(x_a“y> +(x — py) [2@(55 _U”y> —1] :

where®(x) is the standard normal cumulative density func-

tion, thus we havéi% = f(z). By inserting the result
into Eq. 6, we get

Ey(d) = 2/f<x_g””) f(”““‘a“) dz
T— [ T— [ T — [y
+2/ Uyq»( Uy>f< - )m
_/x;ﬂy f(x_a'ux>dx

Ty +To+Ts.

For T, andT3, we have straightforward solutions

1 T  (@—py) 2+ (@—pa)?
T = f/e 202 dx
Vs
1 by  Cr—pa—py) +(py —pa)?
= —/e 402 d.’L‘
Vs
_ fy = Ha / <2w—ux—uy)
- 2 dx
f( V20 ) J V20
) )
V2o V2 V2o oo
RCH G
f oo
xr — xr — e
T = _|:(Nac—,uy)(1)< M)—Uf(m”)}
ag ag r——00
= MKy = Haz,

whereasl, requires a more complex derivation, which we
omit here only giving the final resflt

() )

yielding the searched expected valueldfn the following,
we use) = u,, — i, the difference between the distribution
means)

Ei(d) =2V20 f <fg>+25q><fg)—5. (®)

Figure 3 shows; (d) as a function of for o € {0.5, 1,2}
and indicates the lower bound &f (d), which is given by
the limit

lim By (d) =

5 o
Jo—*+o0

)

This limit can also be calculated using Eq. 6: Wl“gérap-
proaches infinity, the deviation afs distribution function
becomes infinitely small as compared with its mean’s dis-
tance toy’s mean. Consequently, the normal distribution

8The authors would be happy to provide the proof to everybatiy is
interested.
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The principal difference to the former is the minimization
in Eq. 1 to search for the optimal sequence of vectors. This
directly affects the expected value @fjivenx (cf. Eq. 7),
since now we do not have a normal distribution as proba-
bility density function ofy but the more complicated term

pN(Z/|$)
En(dlz) = / @ —ylpxGl)dy . (12)

Here, N denotes the number of feature vectors in the tar-
get feature vector sequeng€’, which serves as a pool we
select appropriate units from, see Section 2. Again, we as-
sume these vectors to be normally distributed with the pa-
rameters.,, ando and independent of each other.

For each possiblg, we calculate the probability density of

Fig. 3. Expected value of the mean distance between twothen" target feature vector being equaljand closest to

feature vectordr; (d) as a function of the difference of the
distribution meang and of the standard deviation

can be replaced by the Dirac delta functifiryielding

o0
. . 1 T — Mg
1 E = 1 — E
5/033:00 1(d) 5/05%:0@0/ 1(dx)f< g >dx
. 1 7 T — Mg
= lim /El(dl‘)A( )dﬂ;‘
§/c—to0 O
= A2 [ Bt + ) A©ade
= lim FEy(d|pe 10
6/01_I)Ilioo 1(d|pa) (10)

Applying Eq. 7 yields
)

()l

lim Fy(d)= lim 2
6/(7121:|:ool( ) é/agrzll:ooaf

)| ay

Interestingly, we found that for the special case- 0 and

o =1, Eq. 8 becomes the closed form solution of what
in statistical process control is referred to as the comstan
d»°, whose valud .1284 determined by numerical means is

given in textbooks on process control, e.g. [23]. We obtain

4.3. An Attempt of Finding a Closed-Form Solution

After studying the a-priori alignment, we want to extend

the above approach to the unit selection-based alignment.

Sthe expected distance between two instances of a standardip
distributed random process

2. The sum over all of these vectors from 1Xoyields the
searched densityy (y|x).

To be more detailed: The probability density of & vec-
tor being equal to y is

g

The probability of thent" vector being closest to means
that the distance to all other vectarsforv € {1,..., N},

v # n is greater than that tg,, or, giveny,, = y, that
lyy — x| > |y — |

Y — My
a

N

Qn =p( N\ lyw—2l >y —xl)
v=1

v#n

N
=[] pyw — 2| > ly — =)

fory <«

p <y v >20—y)N Tt
N otherwise

P>y Vo <2z —y)N !
(a(

(1-9(
Here,y is ay-like distributed random variable replacipg

forv e {1,...,N},v # n. Accordingly, Eq. 12 becomes
(also cf. Eq. 7)

Y—Hy
o

20 —y—p N-1
)+1—¢(%‘y>> fory <

2c—y— N—1 .
) + @(#)) otherwise

Y—Hy
o

N
> (PaQu)dy (13)

n=1

Ex(dlz) = / x|



= f/ <x—y>f(yjj‘y>(1 + @(y—aﬂy) - @(25”_3_#74))]\]2@
- ]jﬁf—y)f <y0““><1 - <I><ya“ J) +q>(2mzuy>>]v -

dy
As already mentioned in footnote 7, fof = 1, this be-
comes identical to Eq. 7.

One can show that Eqg. 13 can be simplified to the problem

of solving
/fm(x) O"(z—0)dx for me{1,2}andne{0,1,2,...},

whose closed-form solution we do not know for> 1.
However, if we consider large values@f—)f(cf. Eqg. 9), we get

Applying the above steps to the ca(;%e—> —o0 and using
the relationsP(x) = 1 — ®(—z) and f(x) = f(—=x), we
have

6/c—+to0

3 [ (5) (-0 (5) e

§/oc—+oco O
—co

Substitutingz by |§| — o¢ yields'©

a very exact approximation of the searched expected value 1im FEy(d) =

of d as already discussed in Eq. 10 by 8/ —do0
5/011—1}1ioo EN(d) - 5/011—131:00 EN(d“LI) '
Together with Eq. 13, where we substitugby z + .., we N [ _
have = — [ (0] =0 f(=) (1 = 2(=£)" " (~ode)

5/4711—I>I:1|:oo En(d) = (14)
im N O T WP Nﬁiz
= S (Gre(D) o)

1
dz

() 6)

0

|

8 8~

(&N tde

N [ (3100

3| [W[m oN /Oosf@cb ¢

N-1
¥ )N

18] — ou(N) . (16)

Forg — 00, the first integral of this equation becomes zero, The structure of this formula gives a qualitative overview

-0

z

lim
6/oc—00

(15)

since about some of the expected value’s characteristics. We have
at
g

) —0for 2<0. the term|d|, which is independent of the standard deviation
Furthermore, in the remaining integral, we have

lim &

6/oc—00 g

—z—9
( c ):0 for z >0,
and, taking into account the observation in Eq. 15, we are a
lowed to extend the remaining integral’s lower limittao
since this adds zero. Consequently, gor—> oo, we can
express Eq. 14 by

lim EN(d) -

6/o0—00

Zf<z—5 1)

z —

lim
§/c—o0 O
—o0

g

)(o-e(559) e

o and a term, which is a constant with respedtdout lin-
early depends os.
[24] gives solutions tqu(N) for N € {1,...,5}, but so far,
for £ > 5, we did not succeed in finding a closed form.
Table 3 gives some example valuesi@fV), and Figure 4
shows a plot ofEy (d) as a function ob for several val-
|-ues of N. We see that for largé, the graphs approach
|6| — ou(N) as derived in Eq. 16, and faV = 1, one
obtains the special case discussed in Egs. 9 and 11.
Although we are not able to find a solution tdN') for
an arbitraryN, we can derive partial results exploiting the
symmetries off and®

10As the quotientg disappears here, we can remove the limit in the
following expressions.



N w(N) closed form ofu(N)
1 0 0
2 0.56 L
3
3 0.85 —
2y/m
6
4 1.03 — arctan V2
/73
15 5
5 1.16 \/? arctan v/2 — ﬁ
10 1.54
100 2.51
1000 3.24
1000000 | 4.86

Table3. The offset constant(V) for different values ofV.

This formula enables us to recursively computéV) from
w(l),..., u(N —1); unfortunately, it holds only for oddV,

)M(k) for N € {1,3,...}.

— N=1
---- N=10
—— N=1000
————— N = 1000000

Fig. 4. Expected value of the minimum distance between
a source feature andy target feature vector&'y(d) as a
function of the difference of the distribution meafhsand
the number of available target feature vectdiso = 1.

whenN approaches infinity

, . N-1
Jm op(N) = lim N[ f(e)®(z)" " de
0
= lim N /xf(ac)@(ac)N_ldx
N—oo

oo

+/xf(x)(1>(x)N_1dx . @an

0

We know that f(z) is an even function, and is odd,

so zf(x) is also odd. ®(z) is a strictly positive, mo-
notonous, and bounded function, hence we know that
ffm zf(x)®(x)N e <0and [~z f(z)®(x)V " dx > 0.
Consequently, both terms become smaller, if we replace
gn(z) = ®(2)V~1 by a functionh y (), which is greater
than the former for: < 0 and smaller for: > 0

gn(0) = 2,\,1,1 for <0
hy(z) = 0 for 0 < <&y
z for &y <z

Here,&y > 0 is the position, whergy (z) becomes,
v =127, (18)

Figure 5 shows an example of the functions(x) and

so we would not be able to find a general statement unlesdv (2)-
we find a description for evelN.

However, there is a way to study the behaviouru¢fV)

11This relation is only true foiV > 2, which is, however, no additional
constraint, since we want to investigate the limit fér— oo.



Fig. 5. Example of the functiongy (z) and hy(x) for
N =5; & = 0.998, cf. Eq. 18.

Applying the definition of. v (z) to Eq. 17 yields

A}im w(N) > A}im N [ zf(x)hy(x)dx
N 0
+g/xf(x)dx
N
. -N Nf(én)
= m {21\/—1\/% Ty
1.
= 5 Jlm Nj(ew). (19)
Using Eqg. 18, we can expres§as a function of
log 2
N=1-—>"_ 20
log #(€1) 20

and we observe that wheN approaches infinity, alséy
approaches infinity. Consequently, we are allowed to rewrit

Eq. 19 as
(1 ~ log2 >
log @(&n)

_log2 . f(Ew)
2 en—oolog®(En)

Application of I'Hbspital’s rule produces

lim p(N)

N—o0

\%

3 Jimf(x)

En—00

. g2 | ~Ewf(En)
e LU (30
B2 imnd(ey)
= XX.

Hence, the limit value for (V) is infinity if NV approaches
infinity. However, this means that for very lar@é, the ap-
proximation Eq. 16 is not useful, since the expected value of
d is non-negative. Consequently, wh&napproaches infin-

ity, we must not apply the simplifications derived in Eq. 10,
but have to consider the original definition &6 expected
value (cf. Eq. 6)

lim En(d) =

N—o0

17 —
lim /EN(d|a:)f<x “")dx,
N—oo O (o2

whereEy (d|x) is declared in Eq. 13. Several substitutions
and the application of Lebesgue’s dominated convergence
theorem considering the fact th&g (d) is finite leads to the
result?

&i_xgo En(d)=0.
This can be regarded as a proof of a special case of the
speech alignment paradox taking the above formulated con-
ditions into account.

5. CONCLUSION

For the highly computational complexity of text-indepen-
dent speech alignment based on unit selection, we were not
able to investigate the speech alignment paradox by means
of very large amounts of data. This was the reason for ap-
plying a mathematical model describing two speech sam-
ples by means of Gaussian mixture models. For a special
case, we could derive a mathematical proof of the paradox.
Future work is to focus on the generalization of this paper’s
investigations.
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