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Abstract
Applying a recently presented text-independent speech
alignment technique based on unit selection to the training of
a voice conversion system suggested that the more training
data was available, the less speaker-specific information
was learned. This paradoxical effect contradicts experience
we have from other corpus-based applications as speech
recognition or synthesis. There, the performance usually gains
with increasing amount of data. In this paper, we investigate
this paradox by means of several experiments and derive a
mathematical proof for a special case of the speech alignment
paradox.
Index Terms: speech processing, speech alignment

1. Introduction
In several speech processing applications (e.g. in speech rec-
ognition [1], speaker identification [2], or speech data min-
ing [3, 4]), we have to find a time alignment between speech
samples, usually generated by different speakers. Mainly, the
texts underlying the compared speech samples is identical,
which allows for applying dynamic time warping [1] to the
problem. If the underlying text is known, forced alignment [5]
can be performed, which may lead to more accurate results.
However, certain applications require the alignment of utter-
ances, which are not parallel. Here, we face the text-indepen-
dent alignment task. Recently, we presented a technique based
on unit selection, which was used for text-independent voice
conversion training [6] and later extended to cross-language
voice conversion [7].
When compared to text-dependent alignment (dynamic time
warping), the achieved speech quality of the voice-converted
speech was improved by means of the novel technique,
whereas the similarity to the target speaker decreased. Table 1
shows the results of a subjective evaluation reported in [7]. As
common metrics, for both overall speech quality and similarity
to the target, a mean opinion score [8] on a five-point scale (1
for bad to 5 for excellent) was applied.
As informal listening tests suggested, both effects, the quality
boost and the similarity score loss, increased with increasing
amount of training data. This paper is to study this paradox
focusing on the similarity effect, which can be described by ob-
jective criteria, rather than the speech quality, whose objective
investigation is still a hard problem [9].

This work has been partially funded by the European Union under
the integrated project TC-Star - Technology and Corpora forSpeech to
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MOSQ MOSS

(quality) (similarity)
text-dependent 3.3 2.4

text-independent 3.5 2.0
source voice 4.7 1.6

Table 1: Results of a subjective evaluation on the application
of speech alignment to voice conversion: overall speech quality
(MOSQ) and similarity to the target (MOSS)

2. Text-Independent Speech Alignment
Based on Unit Selection

We consider two arbitrary speech samples to be aligned. At
first, they are broken down into frames1. Now, the frames are
encoded leading to two sequences of feature vectors2 repre-
senting source and target speech,xM

1 andyN
1 . To perform the

alignment, from the latter, vectors are to be selected and joined
to a sequencẽyM

1 that optimally corresponds to the source se-
quence. This is done by taking two criteria into account:
• The distance between source and corresponding target fea-
tures (target cost) is minimum (optimal correspondence).
• The distance to the neighbors of the corresponding target fea-
ture vector (concatenation cost) is minimum (optimal natural-
ness). This criterion is to select naturally smooth segments3

from the target feature vector sequenceyM
1 .

Mostly, these optima do not coincide, and we must get by with
a compromise between both: We search for the minimum of the
weighted sum of target and concatenation cost for each source
feature vector:

ỹM
1 =arg min

yM
1

M
X

m=1

n

X

αS(ym−xm)+(1−α)S(ym−1−ym)
o

.

(1)

1In our study, we utilized pitch-synchronous time frames produced
by the Praat tool [10], since this allows for using standard pitch modifi-
cation techniques to change prosodic properties of speech in the frame-
work of voice conversion. However, all the following considerations
also apply to constant frame lengths as mostly used in speech recogni-
tion.

2Here, we use line spectral frequencies; in other applications, one
would certainly prefer other types as mel frequency cepstralcoefficients
or linear predictive coefficients, cf. [11].

3or units; that is, where the termunit selectioncomes from. This
paradigm is well-known from concatenative speech synthesis, where
optimal speech units are selected and concatenated, cf. [12].



Figure 1: Text-independent speech alignment: average distance
between corresponding source and target feature vectorsd de-
pending on the amount of data and the trade-off parameterα.

α

Here,S(y − x) is the Euclidean distance between the vectors
x andy, and0 ≤ α ≤ 1 is a weight influencing the trade-off
between target and concatenation cost.

3. Experimental Evidence of the Speech
Alignment Paradox

As already argued in Section 1, we want to limit the investi-
gations on the speech alignment paradox to the similarity of
the aligned speech samples. We claimed that the more data
was available, the less speaker-specific information could be ex-
tracted for the application to voice conversion. An explanation
of this effect is that the units, which are selected to minimize the
Euclidean distance to the source become more and more similar
to the latter, the more data is available to select from. Hence, it
provides less and less target-specific information.
To investigate this effect, we want to use the mean Euclidean
distance between the aligned feature vector sequences as an ob-
jective measure:

d =
1

M

M
X

m=1

S(ỹm − xm) .

Now, we want to look at the dependence of the increasing sim-
ilarity between source and aligned target speech, i.e. decreas-
ing d value, on the amount of data available. In doing so, we
also have to take the trade-off parameterα, see Eq. 1, into
account. We conducted experiments using the evaluation cor-
pus of the European speech-to-speech translation project TC-
Star [13], which consists of about 10 minutes of speech of two
female and two male British English voices. Independent of
the voice combinations to be aligned, we got very similar out-
comes. As an example, we display the results of a female-male
voice combination in Figure 1 in double logarithmic representa-
tion. We observe that independent of the trade-off parameterα,
the values ofd almost constantly decrease4. To simplify mat-
ters, in the following, we look at the special caseα = 1; the
respective diagram is shown in Figure 2.

4except forα = 0, which does not lead to a useful alignment, since
no target costs are considered

Figure 2: Special caseα = 1.

For the considered amounts of data, our test samples are almost
located on a straight line in double logarithmic representation.
Consequently, the relation betweend andt can be approximated
by5:

log d = c− b log t with b > 0 ;

exponentiation yields

d = ec−b log t = ecelog t−b

= at−b with a, b > 0 . (2)

If we assume the validity of Eq. 2 also for amounts of data be-
yond the experiment’s scope, we get the limit

lim
t→∞

d = lim
t→∞

at−b = 0 . (3)

This means, for very large amounts of data, the aligned speech
samples become very similar to each other (for the limit case
even identical), which provides evidence for the speech align-
ment paradox. Unfortunately, the speech alignment algorithm
based on unit selection is very computationally expensive (cf.
[7]); to process 400 seconds of speech, the computation took
more than 80 hours on a 3GHz Intel Xeon machine. Thus, cur-
rently, we are not able to massively increase the amount of data
involved. This is the main reason for describing the paradox by
mathematical means as done in the next section.

4. Towards a Mathematical Proof of the
Speech Alignment Paradox

Although the empirical investigations of Section 3 were con-
firmed by several experimental cycles, doubts arose on the va-
lidity of the limit value shown in Eq. 3, as it could be interpreted
as follows:
If there is enough speech data available, an arbitrary utter-
ance of an arbitrary voice can be produced only by selecting
and concatenating units from this data.
However, the crucial point in the statement is the word
enough. Applying the parametersa = 6.8 andb = 0.18 de-
termined on the data of Figure 2 to Eq. 2, we estimated the
required amount of data for several degrees of similarity, cf.

5in the following equations, we use the normalized timet :=
t
s

to
avoid confusion



d t disk space
5 5.6 s 174 kB
2 900 s = 15 min 27 MB
1 4.2 · 104 s = 11.7 h 1.3 GB

0.5 2.0 · 106 s = 22.8 d 59 GB
0.2 3.2 · 108 s = 10.3 a 9.2 TB

Table 2: Required amount of data (t) for certain degrees of sim-
ilarity (d) and the corresponding hard disk space necessary for
storing a16kHz/16bit PCM version of the data

Table 2. We see that the amount of necessary data extremely
grows when the mean distance between source and aligned tar-
get feature vectors becomes smaller and soon exceeds the limits
of the technical possible.
Nonetheless, since the validity of the statement phrased
above could be of high interest to the speech processing com-
munity, in the following, we will investigate the alignment tech-
nique’s behavior for very large amounts of data by mathematical
means.

4.1. Speech as a Mixture of Gaussians

As introduced in Section 2, we describe the processed speech
by sequences of feature vectors, whose statistical characteris-
tics are very often described by means of the Gaussian mix-
ture model – in literature, we find applications of this model
to speech recognition [14], language identification [15], voice
conversion [16], speaker recognition [17], speaking rate esti-
mation [18], gender classification [19], etc.
The success of the Gaussian mixture model in these speech pro-
cessing fields also suggests its application to the investigation of
the speech alignment paradox.
In order to keep things manageable, we reduce the number of
degrees of freedom as follows:
• We set the number of Gaussian mixture densities to
K = 16.
• We reduce the dimensionality of the feature vectors to
D = 1 (w.l.o.g.).
• We assume identical covariance matrices for the feature vector
sequences to be aligned, i.e., forD = 1, we have the standard
deviationσ.

4.2. Proving a Special Case

To determine the expected value of the distanced between a
source feature vectorx and the closest ofN target feature vec-
torsyN

1 , we exploit the fact thatx is normally distributed with
meanµx and standard deviationσ and reduce the problem to
determining the expected value ofd givenx:

EN (d) =

∞
Z

−∞

EN (d|x)N (x|µx, σ)dx , (4)

N (x|µx, σ) is the probability density function of a normal dis-
tribution. In the following, we use thestandardnormal distri-

6Hence, for these considerations, there is no need for using the term
mixturewhen referring to the model. However, the authors showed that
the proof can also be derived for arbitrary numbers of Gaussian mixture
densities for the source and target speech. To print the fullproof would
be beyond the scope of this publication, but the authors would be happy
to provide it on demand.

bution

f(x) =
1√
2π
e−

x2

2

and modify Eq. 4 accordingly

EN (d) =
1

σ

∞
Z

−∞

EN (d|x) f
“x− µx

σ

”

dx . (5)

Figure 3 showsEN (d) for several values ofN as a function
of the normalized distance between the distribution meansδ =
µy−µx

σ
.

For the expected value ofd if x is fixed, we have

EN (d|x) =

∞
Z

−∞

|x− y| pN (y|x)dy . (6)

Again, we assume the vectorsyN
1 to be normally distributed

with the parametersµy andσ and independent of each other.
For each possibley, we calculate the probability density of the
nth target feature vector being equal toy and closest tox. The
sum over all of these vectors from 1 toN yields the searched
densitypN (y|x).
To be more detailed: The probability density of thenth vector
being equal to y is

Pn =
1

σ
f

“y − µy

σ

”

.

The probability of thenth vector being closest tox means that
the distance to all other vectorsyν for ν ∈ {1, . . . , N}, ν 6= n
is greater than that toyn or, givenyn = y, that |yν − x| >
|y − x|:

Qn = p(
N̂

ν=1
ν 6=n

|yν − x| > |y − x|)

=

N
Y

ν=1
ν 6=n

p(|yν − x| > |y − x|)

= p(|ψ − x| > |y − x|)N−1

=

(

p(ψ < y ∨ ψ > 2x− y)N−1 for y < x

p(ψ > y ∨ ψ < 2x− y)N−1 otherwise

=

8

>

<

>

:

“

Φ
“

y−µy

σ

”

+ 1 − Φ
“

2x−y−µy

σ

””N−1

for y < x
“

1 − Φ
“

y−µy

σ

”

+ Φ
“

2x−y−µy

σ

””N−1

otherwise.

Here,ψ is ay-like distributed random variable replacingyν for
ν ∈ {1, . . . , N}, ν 6= n; andΦ(x) is the standard normal cu-
mulative density function, thus we havedΦ(x)

dx
= f(x). Ac-

cordingly, Eq. 6 becomes

EN (d|x) =

∞
Z

−∞

|x− y|
N

X

n=1

(PnQn)dy (7)

.=
N

σ

x
Z

−∞

(x−y)f
“y−µy

σ

”

„

1+Φ
“y−µy

σ

”

−Φ

„

2x−y−µy

σ

««N−1

dy

.=−N
σ

∞
Z

x

(x−y)f
“y−µy

σ

”

„

1−Φ
“y−µy

σ

”

+Φ

„

2x−y−µy

σ

««N−1

dy
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Figure 3: Expected value of the minimum distance between a
source feature andN target feature vectorsEN (d) as a function
of the normalized difference of the distribution meansδ and the
number of available target feature vectorsN ; σ = 1.
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Substitutingu =
y−µy

σ
andv = 2

x−µy

σ
− u in Eqs. 5 and 7,

we derive
EN (d) =

Nσ

4

∞
Z

−∞

v
Z

−∞

f
“u+ v

2
+δ

”

(v−u)f(u)(1+Φ(u)−Φ(v))N−1du dv

−Nσ
4

∞
Z

−∞

∞
Z

v

f
“u+ v

2
+δ

”

(v−u)f(u)(1−Φ(u)+Φ(v))N−1dudv.

An evident application of integration by parts in the inner
integrals – the termsNf(u)(1 + Φ(u) − Φ(v))N−1 and
−Nf(u)(1 − Φ(u) + Φ(v))N−1 are differentials of
(1 + Φ(u) − Φ(v))N and(1 − Φ(u) + Φ(v))N with respect
to u – yields the equality
EN (d) =

σ

4

∞
Z

−∞

v
Z

−∞

(1+Φ(u)−Φ(v))Nf
“u+v

2
+δ

”““u+v

2
+δ

”v−u
2

+1
”

dudv

+
σ

4

∞
Z

−∞

∞
Z

v

(1−Φ(u)+Φ(v))Nf
“u+v

2
+δ

”““u+v

2
+δ

”v−u
2

+1
”

dudv.

Switching the roles ofu andv in the second summand applying
Fubini’s theorem, we finally obtain

EN (d)=
σ

2

∞
Z

−∞

v
Z

−∞

(1 + Φ(u) − Φ(v))Nf
“u+ v

2
+ δ

”

du dv.

Note that foru ≤ v the expression1 + Φ(u)−Φ(v) is at most
1, and therefore

lim
N→∞

(1 + Φ(u) − Φ(v))N =

(

1 for u = v

0 otherwise.

A double application of Lebesgue’s dominated convergence
theorem yields lim

N→∞
EN (d) = 0,

which proves the considered special case of the speech align-
ment paradox.

5. Conclusion
For the highly computational complexity of text-independent
speech alignment based on unit selection, we were not able to
investigate the speech alignment paradox by means of very large
amounts of data. This was the reason for applying a mathemati-
cal model describing two speech samples by means of Gaussian
mixture models. For a special case, we could derive a mathe-
matical proof of the paradox. Future work is to focus on the
generalization of this paper’s investigations.
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