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Abstract

Dictated medical reports very often fea-
ture a preamble containing metainforma-
tion about the report such as patient and
physician names, location and name of the
clinic, date of procedure, and so on. In the
medical transcription process, the pream-
ble is usually omitted from the final report,
as it contains information already avail-
able in the electronic medical record. We
present a method which is able to automat-
ically identify preambles in medical dic-
tations. The method makes use of state-
of-the-art NLP techniques including word
embeddings and Bi-LSTMs and achieves
preamble detection performance superior
to humans.

1 Introduction

For decades, medical dictation and transcription
has been used as a convenient and cost-effective
way to document patient-physician encounters and
procedures and bring reports into a form which
can be stored in an electronic medical record
(EMR) system, formatted as an out-patient let-
ter, etc (Häyrinen et al., 2008; Johnson et al.,
2008; Meystre et al., 2008; Holroyd-Leduc et al.,
2011; Kalra et al., 2012; Logan, 2012; Hyppönen
et al., 2014; Campanella et al., 2015; Moreno-
Conde et al., 2015; Alkureishi et al., 2016; Ford
et al., 2016). While dictated speech has tradition-
ally been transcribed by humans (such as clinical
assistants or professional transcription personnel),
sometimes in multiple stages, it is common nowa-
days for speech recognition technology to be de-
ployed in the first stage to increase transcription
speed and cope with the enormous amount of dic-
tated episodes in the clinical context (Hammana
et al., 2015; Hodgson and Coiera, 2016; Edwards

et al., 2017).
In its purest form, a speech recognizer trans-

forms spoken into written words, as exemplified
in Figure 1. Obviously, this raw output will have
to undergo multiple transformation steps to for-
mat it in a way it can be stored in an EMR or
sent out as a letter to the patient, including: for-
matting numbers, dates, units, etc.; punctuation
restoration (Salloum et al., 2017b); and process-
ing physician normals.

Furthermore, dictated reports often contain
metadata in a preamble containing information not
intended to be copied into the letter, such as pa-
tient and physician names, location and name of
the clinic, date of procedure, and so on. Rather,
the metadata serves the sole purpose of enabling
realigning dictations with a particular record or
file, in case this alignment is not otherwise pos-
sible (usually, metadata in medical transcription
systems is automatically retrieved from the EMR
system and inserted into the outpatient letter). See
Figure 2 for the same text sample as Figure 1
with the preamble highlighted and the above post-
processing rules applied.

In a second stage, medical transcriptionists take
the speech recognizer output and perform a post-
editing exercise and quality check before entering
the final report into the EMR or sending it off as
an outpatient letter. This stage usually involves the
removal of metadata, i.e. the preamble, from the
dictation’s main text body. To facilitate this pro-
cedure, this paper explores techniques to automat-
ically mark preambles.

It is worth noting that the accurate detection of
preambles in dictated reports is a non-trivial task,
even for humans. Clinical dictations may (a) con-
tain metadata at multiple places throughout the re-
port (see Figure 3 for an example), (b) or no such
data at all, (c) feature sentences convolving meta-
data and general narrative, or (d) have grammati-



this is doctor mike miller dictating

a maximum medical improvement slash

impairment rating evaluation for

john j o h n doe d o e social one

two three four five six seven eight

nine service i d one two three four

five six seven eight nine service

date august eight two thousand and

sixteen subjective and treatment to

date the examinee is a thirty-nine

year-old golf course maintenance

worker with the apache harding park

who was injured on eight seven two

thousand sixteen

Figure 1: Raw output of a medical speech recog-
nizer.

This is Dr Mike Miller dictating a Maximum

Medical Improvement/Impairment Rating

Evaluation for John Doe.
SSN: 123-45-6789
Service ID: 123 456 789
Service Date: 08/08/16

Subjective and Treatment:
To date, the examinee is a 39 year-old golf
course maintenance worker with the Apache
Harding Park who was injured on 08/07/16.

Figure 2: Output of post-processor with preamble
highlighted.

cal inaccuracies and lack overall structure caused
by the spontaneous nature of dictated speech, in-
cluding the total absence of punctuations. To sys-
tematically quantify the task’s complexity, we also
determined the human baseline performance of
detecting the preamble in clinical dictation.

This paper is structured as follows: After dis-
cussing related work in Section 2, we describe the
corpus and determine the human baseline in Sec-
tion 3.3. Section 4 provides details on the tech-
niques we used for the automated detection of
preambles, followed by evaluation results and dis-
cussion in Section 5. We conclude the paper and
provide an outlook on future work in Section 6.

This is Dr Mike Miller.
The patient is a baking associate over at Back-
werk.
Today’s date is 03/10/2016.

The patient noted he strained his back while
he was helping his mother move some house-
hold items.

Figure 3: Example of a report intertwining pream-
ble and main body. Physician name and date
of the visit are commonly considered preamble,
whereas the patient’s profession and employer are
not. When spontaneously dictating, physicians
sometimes remember to mention preamble state-
ments only after they have already started the main
body narrative, such as the date of visit in this ex-
ample.

2 Related Work

To our knowledge, the problem of automated
preamble detection in medical transcriptions has
not been addressed before. That said, we do
build upon classic methods in NLP: specifically,
our system is a generalization of sequence tag-
ging, which has seen use in other tasks such as
part-of-speech tagging, shallow parsing or chunk-
ing, named entity recognition, and semantic role
labeling. Traditionally, sequential tagging has
been handled using either generative methods,
such as hidden Markov models (Kupiec, 1992),
or sequence-based discriminative methods, such
as conditional random fields (Lafferty et al., 2001;
Sha and Pereira, 2003).

More modern approaches have shown perfor-
mance gains and increased generalizability with
neural networks (NNs). Collobert and colleagues
(Collobert and Weston, 2008; Collobert et al.,
2011) successfully apply NNs to several sequen-
tial NLP tasks without the need for separate fea-
ture engineering for each task. Their networks fea-
ture concatenated windowed word vectors as in-
puts or, in the case of sentence-level tasks, a con-
volutional architecture to allow interaction over
the entire sentence.

However, this approach still does not cleanly
capture nonlocal information. In recent years, re-
current NN architectures, often using gated recur-
rent (Cho et al., 2014; Tang et al., 2016; Dey and
Salem, 2017) or long short-term memory (LSTM)
units (Hochreiter and Schmidhuber, 1997; Ham-



merton, 2003), have been applied with excel-
lent results to various sequence labeling problems.
Many linguistic problems feature dependencies at
longer distances, which LSTMs are better able
to capture than convolutional or plain recurrent
approaches. Bidirection LSTM (Bi-LSTM) net-
works (Graves and Schmidhuber, 2005; Graves
et al., 2005; Wöllmer et al., 2010) also use fu-
ture context, and recent work has shown advan-
tages of Bi-LSTM networks for sequence labeling
and named entity recognition (Huang et al., 2015;
Chiu and Nichols, 2015; Wang et al., 2015; Lam-
ple et al., 2016; Ma and Hovy, 2016; Plank et al.,
2016).

In some approaches, tag labels from NN out-
puts are combined in a final step, such as condi-
tional random fields, especially when the goal is
to apply a single label to a continuous sequence of
tags. Our architecture, as described in Section 4,
also utilizes a post-tagging step to define a clear
preamble endpoint.

3 Corpus and Inter-Annotator
Agreement

In this section we report on the corpus used for
this study, the methodology for computing inter-
annotator agreement, and we analyze the preamble
split positions in more detail.

3.1 The Data

A total of 10,517 dictated medical reports were
transcribed by a team of professional medical tran-
scriptionists (MTs) organized in a private crowd
as described in (Salloum et al., 2017a). The pro-
duced transcriptions were raw, i.e., only lower-
case alphabetic characters, dash, and underscore
were permitted, resulting in output as shown in
Figure 1.

In a separate round, we sent these transcribed
reports to a private crowd of MTs to acquire a to-
tal of five annotation jobs per file. Since we cannot
specify all types of information that are expected
to be found in preambles ahead of time, we let
the MTs, who are well experienced in transcrib-
ing medical dictations, determine the exact split
position that, in their opinion, separated preamble
text from main report. This approach allows us to
harvest the wisdom of the crowd and define what
they agree on as the ground truth, which we can
then learn automatically.

Figure 4: Histogram of the maximum number of
exact agreements obtained for the annotated re-
ports

3.2 Inter-Annotator Agreement

In order to establish a corpus with reliable labels
which subsequently can be used to measure human
accuracy and train and test the automatic preamble
detector, we defined a gold-standard annotation to
be one where at least three annotators agreed on
the exact split between preamble and main body.
Figure 4 shows a histogram of the frequency of
number of agreements. For example, out of the
10,517 reports, 5,092 have all annotators agree
on the split position while only 5 reports have 5
different annotations. By reducing the corpus to
only those reports with at least three annotators in
agreement about the split position, we ended up
with a total of 9,754 reports, or 92.75% of the
original body of data. 4.4% of the reports were
not annotated by all five annotators, constituting
the majority of omitted files. The lack of anno-
tations is presumably due to annotators not being
sure how to split, or due to oversight. Missing an-
notations makes it harder for such files to match
the three-agreement threshold.

Overall, it became clear that the lack of guide-
lines on specific types of phenomena featured in
the preamble, such as including or excluding a
patient’s employer, led to disagreements that ulti-
mately caused the exclusion of reports—although
note that nearly half of included reports do have
at least one dissenting opinion. This analysis is
specifically helpful for designing new guidelines
for the next round of annotations, which will lead
to cleaner data fed to our system.

We split the 9,754 reports randomly into train-
ing and test sets. Table 1 shows some statistics
about the data split. The test set out-of-vocabulary



Set # reports # tokens # types
Training Set 8,711 3,335,588 30,707
Test Set 1,043 415,491 13,507

Table 1: Corpus statistics.

(OOV) rate against the training set is 10.76%
(1,454 types).

In order to quantify the inter-annotator agree-
ment, we compared each annotator against the ma-
jority vote, resulting in the following annotator
split accuracy scores: 83.22%, 86.09%, 86.09%,
86.58%, 88.20%. The average inter-annotator
agreement score, 86.04%, will serve as standard
of comparison in this paper.

3.3 Analysis of Preamble Split Positions

As motivated in the introduction, the use of pream-
bles in medical dictations is not very consistent.
E.g., a good amount of dictations do not contain a
preamble at all, whereas others contain multiple,
even others convolve preamble and main text so
much that it is very hard to determine the exact
split position. In this work, annotators were re-
quired to provide a single split tag at the location
were they found the boundary to be most appro-
priate. If annotators did not find any preamble in
the dictation, the tag was placed in front of the first
token of the dictation.

Figure 5 displays a histogram of the split posi-
tion in reports. The vast majority of split positions
are below 100 tokens into the dictation (compared
to the average total token count for the dictations
in our corpus of 385; see Table 1 for exact statis-
tics). There are 319 reports (3.3%) with no pream-
ble and, hence, split position 0.

If we define the problem as a sequence tagging
problem where every token in a preamble is tagged
with I-P (Inside Preamble) and every token in the
main report is tagged with I-M (Inside Main), we
get the histogram in Figure 6.

4 Approach

Although the training data contains 3.3 M to-
kens, the evaluation is at the level of reports, of
which we have only 8.7 K examples. We deter-
mined from preliminary experiments that this lim-
ited amount of examples is not enough to train an
end-to-end neural network to predict the split po-
sition. Therefore, we use a two-step approach to
preamble detection:

1. A sequence tagger that labels every word in
the input sequence with one of two tags: I-
P (Inside Preamble) and I-M (Inside Main).
This tagger leverages the large number of to-
kens in our data, as opposed to the small
number of example reports, which leads to
near perfect tagging accuracy.

2. A report splitter that determines heuristically
at what position to split the tagged report into
preamble and main. This splitter attempts to
correct the tagger’s mistakes.

4.1 The Tagging Model

Like other recent work, our model is based on
LSTM NNs. We experimented with both unidirec-
tional and bidirectional networks. The stack con-
sists of an embedding layer (see Section 4.3 for
details), a (Bi-)LSTM layer, and a time-distributed
dense layer with softmax activation (illustrated in
Figure 7). For the present study, we used Keras
with TensorFlow backend (Chollet, 2015; Abadi
et al., 2016; Chollet, 2017). We applied a cate-
gorical cross-entropy cost function and Adam op-
timization (Kingma and Ba, 2014).

In addition to word meaning and context, the
analysis we did in Section 3.3 motivates that the
correct prediction of tags depends on the location
of words in the report as well (Figure 5 and Fig-
ure 6). Therefore, instead of tagging the input se-
quence using a sliding window like many taggers
do, we have a fixed size input to the network com-
prising the first 512 tokens of the report. Words
after this limit are truncated. We add padding for
reports with less than 512 tokens. Informal exper-
iments showed that varying the window length to
256 or 1024 tokens deteriorated preamble detec-
tion performance.

Since the data we have is limited in size, we use
word vectors pretrained on large amounts of unla-
beled text collected from medical reports and med-
ical dictation transcriptions. This transfer learn-
ing technique is often used in deep learning ap-
proaches to NLP since the vectors learned from
massive amounts of unlabeled text can be trans-
fered to another NLP task where labeled data is
limited and might not be enough to train the em-
bedding layer.

4.2 The Heuristic Splitter

The training examples of the tagging model al-
ways have preamble tags (I-P) preceding main re-



Figure 5: A histogram of the split position in our training set. A point of interest is the split at position 0,
which indicates that 319 reports have no preamble text. The longest preamble text ends at position 131,
after that the curve stays on 0.

Figure 6: Frequency of the two tags at positions in the first 1000 words of reports. The last preamble tag,
I-P, appears at position 131, after that the red curve stays on 0. The main tag, I-M, starts at position 1
with a value 319, and goes up as the report grows longer. The main tag curve then falls down as longer
reports are less frequent than shorter ones.

port tags (I-M). Nevertheless, the neural network
sometimes produces mixed sequences of I-P and
I-M. An example of such output starts with I-P,
switches briefly to I-M, then back to I-P, and then
to I-M. This situation requires another system to
find the exact position in which we need to split
preamble from main report. We use simple heuris-
tics to determine the split position as explained in
Algorithm 1.

The algorithm looks for concentrations of
preamble and main tag sequences. It initializes the
split position it is trying to predict, splitPos, and
a sequence counter, counter, to 0. While scan-
ning the tagged sequence, it increases counter if
it sees an I-P (Line 6) and decreases it if it sees an
I-M (Line 11). counter > 0 means that we have
seen a long enough I-P tag sequence since the last
I-M tag to consider the text so far to be preamble
and the previous I-M tags to be errors. However,

the next I-M tag will set restart the counter (Line
9) and set splitPos to the previous position (Line
10). Lines 12-13 handle the edge case where the
sequence ends while counter > 0, which means
that the whole report is preamble.

It is important to point out that our splitter is bi-
ased, by design, to vote in favor of including more
words in main (i.e., shorter preambles). The rea-
son for this bias is that in applications where the
main text is more valued than preamble (e.g., to
create a formatted note), we take the safe option
not to omit content words.

4.3 Pretrained Word Embeddings
Word embeddings were trained offline using the
original implementation of the word2vec package
(Mikolov et al., 2013b,a). All vectors are 200 di-
mensions and trained using 15 iterations of the
continuous bag-of-words model over a window of
8 words, with no word count minimum.



Figure 7: The NN stack using Bi-LSTM. An em-
bedding at each word step is fed into forward and
backward LSTM layers, which are fully connected
to a softmax-activated output layer. (For the uni-
directional LSTM, the backward layer is omitted.)

We experimented with three sets of embed-
dings, each trained on cumulatively more text:

• “SplitEmb” was trained on the same tran-
scriptions as the tagging model (plus those
on which only two annotators agreed on the
split), with the insertion of a line break at
the split between the preamble and main text.
This break causes word2vec not to train on
co-occurrences of tokens on either side of
the split, hypothetically leading to decreased
similarity between words typically found in-
side and outside of preambles. (3.7 M tokens
total.)

• “SplitTransEmb” added more transcribed
medical dictations which were not part of the
preamble-annotated set. (8.3 M tokens.)

• “SplitTransRepEmb” added formatted
medical reports processed to look like
transcriptions—numerals spelled out, punc-
tuation removed, etc. (60 M tokens.)

5 Evaluation

As a first sanity check, we measured the pream-
ble tagging accuracy on the token level. In other
words, we determined how many of the tokens in
the test set were correctly tagged as being either
part of the preamble or the main body. In this task,

Algorithm 1 The Heuristic Splitter.
1: splitPos← 0 // predicted split position.
2: counter ← 0 // sequence counter.

3: for pos := 1→ length(tags) do
4: switch tags[pos] do

// ... padding is ignored.

5: case I-P
6: counter++
7: case I-M
8: if counter > 0 then
9: counter ← 0 // reset

10: splitPos← pos− 1

11: counter--
12: if counter > 0 then
13: return length(predictedTags)
14: else
15: return splitPos

our system achieved an accuracy of 99.80%, with
only 816 mismatches among the total of 415,491
tokens in the test set.

As motivated in Section 3.2, the ultimate per-
formance measure we are using counts how many
perfect splits the preamble detector found, i.e. the
split accuracy. Table 2 shows detailed results of
the systems introduced in Section 4, comparing
all pre-trained word embedding models across two
embedding schemes (trainable vs. frozen) and for
both Uni- and Bi-LSTM. The best overall system
uses Bi-LSTMs and frozen embeddings, perform-
ing at 89.84% split accuracy. In comparison, as
calculated earlier, the human split accuracy on our
corpus was determined to be 86.04% which con-
stitutes a statistically significant difference. The
fact that our automated preamble detection system
outperforms humans demonstrates the strength of
the presented methods in exploiting synergistic ef-
fects across a crowd of annotators.

We were also interested in the effectiveness of
the heuristic splitter introduced in Section 4.2.
We therefore determined results for both Uni-
LSTM (75.74%) and Bi-LSTM (87.44%) when
leaving out the splitter. Compared to the indi-
vidual best results for Uni- and Bi-LSTMs in Ta-
ble 2, this constitutes a difference of 8.25% and
2.4%, demonstrating a clear positive impact of the
heuristic splitter.



Test OOVs
(first 512)

LSTM Bi-LSTM
Trainable Emb. Frozen Emb. Trainable Emb. Frozen Emb.

# types rate # PS % # PS % # PS % # PS %
Fully-trained Emb. n/a n/a 754 72.29% n/a n/a 863 82.74% n/a n/a
SplitEmb 1133 8.59% 809 77.56% 839 80.44% 911 87.34% 916 87.82%
SplitTransEmb 905 6.86% 809 77.56% 846 81.11% 899 86.19% 937 89.84%
SplitTransRepEmb 230 1.74% 798 76.51% 876 83.99% 907 86.96% 925 88.69%

Table 2: Evaluation of our LSTM and Bi-LSTM models across all pretrained word embedding models.
The first column shows the different pretrained word embedding models we used. The “Test OOVs”
column shows the OOV count and rate against each pretrained embedding model. This only includes
types in the first 512 words of the report (that are passed to the NN) which contain 13,186 types out
of the 13,507. Columns with title “Trainable Emb.” report results where backpropagation is allowed to
update the pretrained embedding layer after it is loaded, while columns with title “Frozen Emb.” does
not allow such updates. # PS is the number of Perfect Splits.

6 Conclusion and Future Work

The work presented in this paper shows yet again
that careful design and execution of state-of-the-
art NLP techniques when applied to traditionally
manual tasks (in this case, the detection of pream-
bles in medical dictations) can approach or even
surpass human performance. We assume that the
presented NLP stack with Bi-LSTMs makes use of
the wisdom of the crowd: it exploits the fact that,
even though the annotators working on this task
were professional MTs, the provided guidelines on
how to tell preambles from main body were not
very detailed.

In future investigations, we would like to see
how more elaborate annotation guidelines can im-
prove human performance and what impact the
improved annotations have on the performance of
an automated preamble detector. It is specifically
interesting to investigate how situations of inter-
twined preamble and main body, as exemplified
in Figure 3, can be resolved by clearer guidelines
or, alternatively, by an annotation scheme allow-
ing for more than a single hard split.

We are also interested to further enhance the
automatic preamble detector by combining the
tagger and splitter into a joint neural network
model, or by implementing a transfer learning step
which reuses the learned tagger weight in a neural-
network-based splitter.
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