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Abstract: In this paper, new approaches to recognition of speech under Lombard 
effect are proposed. Performances of front ends with modified filter banks, multi-
resolution RASTA features, voice conversion and acoustic models adaptation to 
talking style and speaker are evaluated and compared to the common recognition 
schemes. The presented experiments are carried out on Czech SPEECON and 
CLSD’05 databases. It is shown that under Lombard effect, all proposed 
approaches outperform the standard HMM system with MFCC or PLP features. 

 
1. Introduction 
 
One of the major tasks in recent ASR is the design of a recognition system operating reliably 
in real environments. Many past studies have reported a severe deterioration of recognition 
performance when dealing with speech uttered in adverse noisy conditions. In the last 
decades, major effort has been dedicated to the development of noise suppression, speech 
enhancement and model adaptation algorithms. However, it has been observed that even if the 
noise background in the speech signal is reduced, speech production variations introduced by 
a speaker in an effort to preserve intelligibility in adverse conditions (Lombard effect – LE) 
may further significantly corrupt the ASR performance [1]. 

In this paper, several novel approaches to speech recognition are compared to the 
commonly used schemes under neutral and LE conditions. At first, front ends with modified 
filter banks, multi-resolution RASTA features and voice conversion are described and tested 
in the digits recognition task. Secondly, the large vocabulary continuous speech recognition 
(LVCSR) system is introduced and evaluated on three types of speech: neutral, LE and LE 
normalized to neutral by means of voice conversion (VC). Thirdly, the performance of 
acoustic models adaptation to talking style and speaker is examined on the digits and LVCSR 
tasks.  

All presented experiments are carried out on Czech SPEECON [2] and CLSD’05 (Czech 
Lombard Speech Database) [3] databases.  

 
2. Front ends for robust Lombard speech recognition 
 
The front ends presented in this section were tested in HMM-based recognition systems. The 
models were trained on 37 SPEECON female office sessions (37 speakers, approximately 10 
hours of signal). The recordings were down-sampled from 16 kHz to 8 kHz and filtered by the 
telephone filter G.712. Digits from four neutral and LE CLSD’05 female sessions formed the 
open test set, which was used for evaluation. 
  



2.1. Front ends with modified filter banks 
 
Front ends with modified filter banks were designed using a data-driven approach. 8 Neutral 
and 8 LE CLSD’05 female sessions formed the development set (disjunctive from the open 
test set). The triangular filter bank (FB) used for deriving the well-known mel frequency 
cepstral coefficients (MFCC) [4] was replaced by various configurations of FBs with 
rectangular filters distributed over the linear frequency scale. The rest of MFCC algorithm 
was kept. 

It was found that a bank of 20 rectangular filters of the constant width distributed without 
overlap in the interval 0-4 kHz (linear frequency cepstral coefficients – LFCC, 20 bands) 
provides better performance on LE speech, when compared to the former triangular mel FB, 
and a similar performance on neutral speech. Furthermore, omitting low frequency 
components by placing 19 rectangular filters from 645 Hz to 4 kHz (LFCC, 19 bands) 
significantly increased the accuracy on LE speech while slightly decreasing the performance 
on neutral speech. Finally, an algorithm iteratively repartitioning the 19-band FB was applied 
yielding further improvement (repartitioned frequency cepstral coefficients – RFCC) [5]. 
 
2.2. Multi-resolution RASTA features 
 
Multi-resolution RASTA features (MR-ANN) [6] are extracted in 2 stages. Firstly, an 
auditory spectrum with 15 bands is calculated from the speech as in PLP analysis [14]. The 
time trajectory of these sub-band energies is filtered with a bank of two-dimensional filters, 
yielding a set of about 500 coefficients every 10 ms. In the second step, an artificial neural 
network (ANN) projects the coefficients to posterior probabilities of phonemes, reducing the 
feature size. The posteriors are then decorrelated and gaussianized using logarithm and 
principal component analysis in order to better fit the subsequent GMM/HMM model, see 
Fig. 1. 
 
 
 
 
 
 
 
 
 
 

Figure 1: Speech recognition using multi-resolution RASTA features. 
 
2.3. Voice conversion 
 
Voice conversion (VC) is a transformation of the source voice parameters towards a target 
voice [7]. Different properties of the voice, namely characteristics of the vocal tract (formant 
positions, bandwidths), excitation and prosody (behavior of the fundamental frequency) are 
usually addressed separately in the VC. Since LE affects all these characteristics, VC may be 
used as a tool normalizing LE speech towards neutral speech. Such a converted speech may 
better fit models that were trained on neutral utterances.  

The present work uses a VC system based on linear transformation as described in [8], 
see Fig. 1. Here, the source speech is Lombard-affected, and the target is its ‘neutralized’ 
version with respect to the fundamental frequency and formant locations. The excitation is 
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preserved in this case. The speech to be converted is split into pitch-synchronous1 frames by 
means of the automatic pitch tracking described in [9].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Components of the voice conversion system used in this study. 
 
These frames are featurized to line spectral frequencies (LSF) showing superior manipulation 
properties compared with other features as LPCs or MFCCs [10]. Subsequently, a linear 
transformation is applied to the LSF features, intending to change the vocal tract 
characteristics towards the target voice. The parameters of the transformation are estimated in 
the training phase using the approach described in [11]. 

The converted features are transformed back to time domain using a procedure called 
residual prediction [12] and concatenated by means of pitch-synchronous overlap and add 
[13], where the fundamental frequency is changed towards the target voice. The resulting 
speech that better resembles the target voice characteristics substitutes the original speech at 
the input of the speech recognizer. 

The presented investigation exploited the fact that parallel utterances from each speaker 
were available, i.e. pairs of the same utterance with and without Lombard effect that allowed 
for properly training the transformation parameters. Mean fundamental frequency of source 
and target were derived from the mean frame lengths. 

 
 
 
 
 
 
 
 
 

 
Figure 3: Distribution of F0 in female digits and average locations of F1 and F2 in their vowels. 

 

                                                 
1 In speech synthesis and related technologies, pitch-synchronous frames are used, since this allows for 
prosodical manipulations as changing the fundamental frequency. 
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In  this work, the impact of two variants of VC on the recognition accuracy was examined. In 
the first case, both fundamental frequency (F0) and formants were transformed (converted LE 
speech, CLE), in the second only F0 was converted and formants preserved (CLEf0). 
Distributions of F0 and mean positions of the first two formants F1,2 in the female digit vowels 
for neutral, LE, CLE and CLEf0 speech are shown in Fig. 3. The slight difference between LE 
and CLEf0 formant positions is presumably caused by occasional confusion of F0 and F1 by 
the automatic formant tracking algorithm. 
  
2.4. Comparing performances 
 
Firstly, MFCC features with modified FBs (LFCC, 20 bands and LFCC, 19 bands) and MR-
ANN features were integrated into the HMM recognition system and compared to MFCC and 
PLP [14] features in the digit recognition task. Four neutral (1450 digits) and four LE (1880 
digits) CLSD’05 sessions formed the open test set, see results in Tab. 1. 

All newly proposed front ends outperformed the standard features on LE speech. The best 
results were reached by MR-ANN and LFCC, 20 band features, where performance on the LE 
set was significantly better and on neutral speech comparable to MFCC and PLP. It is shown 
in [5] that omitting low frequency components introduces a trade-off between performance on 
LE and neutral speech, which is also confirmed by the results in Tab. 1.  
 
 
 
 
 
 
 
 
 

Table 1: Comparing standard and new features in the digits task – word error rates – WER (%). 
 
Secondly, the performance of the combination of voice conversion and feature extraction was 
evaluated. Expolog features [1] (designed to be more robust to LE than standard features), 
LFCC, 20 bands and RFCC features were compared to MFCC and PLP. The RFCC FB was 
tested in two feature extraction algorithms – as a replacement for the FB in MFCC (RFCC-
DCTC) and for the FB in PLP (RFCC-LPC). 

For this experiment, only utterances comprising sequences of eight digits were picked 
from the open test set for the evaluation, i.e. 768 digits in the neutral set and 1024 digits in 
each of the LE, CLE, and CLEf0 sets. 

 
 
 
 
 
 
 
 
 
Table 2: Combining voice conversion and feature extraction in the digit recognition task – WER (%). 

FE\Set Neutral LE CLE CLEf0 
MFCC 3.7 71.3 30.9 58.6 

PLP 2.9 47.4 25.2 49.0 
Expolog 3.9 35.8 26.7 37.8 

LFCC, 20 bands, full band 3.0 42.1 19.9 42.7 
RFCC-DCTC 5.1 26.1 22.6 22.6 
RFCC-LPC 4.6 23.0 23.1 23.7 

Open set 
Conditions 

Neutral LE 
MFCC 3.7 68.7 

PLP 3.4 61.3 
MR-ANN 4.1 42.1 

LFCC, 20 bands, full band 3.3 49.4 
LFCC, 19 bands, ≥ 625 Hz 6.6 24.6 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Combining voice conversion and feature extraction in the digit recognition task. 
 
As shown in Tab. 2 and Fig. 4, with an exception of RFCC-LPC, VC improved recognition 
accuracy of all front ends (compar LE and CLE). Expolog features outperformed MFCC and 
PLP on the LE set while providing comparable accuracy on the neutral data. The best results 
on the LE set were achieved by RFCC-LPC. These features even gained on RFCC-DCTC, 
which lets us conclude that LPC is more suitable for loud speech modeling than DCT. This 
observationagrees with those reported in [1]. 
 
3. LVCSR task 
 
The presented large LVCSR system [15] employs an MFCC front end. The acoustic part is 
formed by 48 HMMs, from which 41 represent Czech phonemes, the remaining 7 model noise 
events. All the models are context-independent and comprise a large number of Gaussian 
mixtures (up to 100). A multiple-pronunciation vocabulary with 312,000 words is used 
together with the corresponding bigram language model (LM). The LM is trained on the 4GB 
newspaper corpus [15]. 

Speech consisting of 973 words uttered by 11 male speakers and 970 words uttered by 11 
female speakers was sampled with 16 kHz and recognized with and without LM using 
speaker-dependent acoustic models. As in the previous section, the impact of voice 
conversion on the recognition accuracy was evaluated, see Tab. 3 and Fig. 5. 
 
 
 
 
 
 
 

Table 3: Impact of LE and voice conversion on the LVCSR task – word error rates (%). 
 
In all cases, the LM improved the performance. VC was not helpful in this task. Since in 
LVCSR a misrecognition of just one phoneme may result in a word mismatch, even a slight 
inaccuracy in the VC (see also Fig. 3) corrupts the recognition. As in the digits task, a 
significant decrease in performance for speech under LE was observed.  

Set Neutral LE CLE CLEf0 
Male - no LM 77.9 85.3 91.5 85.5 

Male - LM 40.4 55.8 69.4 60.0 
Female - no LM 72.9 86.5 90.1 87.9 

Female - LM 28.9 63.7 66.7 60.4 
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Figure 5: Impact of LE and voice conversion on the LVCSR task. 
 

4. Model adaptation 
 

For speaker adaptation, a combination of maximum a posteriori (MAP) [17] and maximum 
likelihood linear regression (MLLR) [18] methods was used. The adaptation was performed 
in two steps: Mean vectors of GMMs in speaker-independent (SI) acoustic HMMs were 
transformed by MLLR, and the transformed values were used as priors for the MAP-based 
adaptation. The implementation of MLLR used in this work was based on clustering of all 
acoustic models using a binary regression tree. During the adaptation process, the tree was 
searched down from the root towards the leaves while the transformations were calculated 
only for those nodes, where sufficient adaptation data was available. In the preliminary 
experiments, it was found that the clustering is more effective, if the first two nodes of the 
regression tree are created manually by splitting all the acoustic models into two groups: 
models of noises and models of phonemes. The benefit of this approach gains from the fact 
that models not covered in the adaptation data can still be adapted well by MLLR, while MAP 
only ensures that parameters of models with a lot of adaptation data can converge towards the 
theoretically best values. Only the mean vectors were adapted in this work. The following 
experiments were carried out on a set of 10 speakers: 
• SI adapt to LE (same speakers train/test) – from all speakers, 2/3 of the LE utterances are 

used for SI model adaptation, 1/3 for open test (880 digits, 970 words) 
• SI adapt to LE (different speakers train/test) – 6 speakers are used for SI model 

adaptation, the utterances from the remaining 4 speakers form the test set (1024 digits, 
1081 words) 

• SD adapt to neutral – speaker dependent (SD) models for each speaker are adapted to 
neutral utterances, tested on LE speech (880 digits, 970 words)  

• SD adapt to LE – SD models are adapted to LE, 2/3 of LE utterances are used for SI 
model adaptation, 1/3 for open test (880 digits, 970 words) 

The numbers in the above brackets represent the numbers of items being recognized using 
LM and a 312K vocabulary. The results of the experiments are in Tab. 4, 5 and Fig. 6. 
 
 
 
 

 
Table 4: Performance of acoustic models adaptation in the digit recognition – word error rates (%). 

Digits – WER (%) LE baseline LE adapted Neutral baseline
SI adapt to LE (same speakers train/test) 54.7 16.8 15.0 

SI adapt to LE (different speakers train/test) 55.5 16.9 – 
SD adapt to neutral 54.7 43.9 15.0 

SD adapt to LE 54.7 8.5 15.0 
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Table 5: Performance of acoustic models adaptation in the LVCSR task – word error rates (%). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Efficiency of acoustic models adaptation in the digits and LVCSR task. 
 

As shown in Tab. 4, 5 and Fig. 6, all configurations of the acoustic model adaptation 
improved the recognition performance. As expected, the best results were reached by SD 
model adaptation to LE. In general, various speakers react to the same noisy conditions 
differently, which may discourage any global adaptation. However, a remarkable 
improvement was observed for both SI adaptations to LE. Surprisingly, even the SI case with 
different speakers for the adaptation and evaluation improved the performance. SD adaptation 
to neutral speech achieved worse results than the other approaches, as the speech 
characteristics under LE differ significantly from the neutral ones (as shown also in Fig. 3). 
 
5. Conclusions 
 
Various approaches to Lombard speech recognition were introduced and evaluated. The 
performance of modified front-end filter banks, multi-resolution RASTA features, voice 
conversion, and acoustic model adaptation was tested on Czech SPEECON and CLSD’05 
databases. Each of the mentioned approaches led to considerable improvements in 
performance. A trade-off was observed between tuning the system for the Lombard speech 
and the performance on neutral speech. It seems that small and large vocabulary tasks require 
different recognition approaches. 
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