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Task Definition

Subject:
Development of a tagger for the text-to-speech system Papageno

Target:
A data-driven multilingual tagger for the SIEMENS TTS system Papageno
is to be developed. Its input consists of possibly ambiguous word categories
of any text. As output is expected a definite category for each word. Apart
from a good quality the scarcity of memory and processing performance is to be
considered. Dependent on application and language the category list must be
definable without restrictions. To serve as training data hand-tagged texts and
linguistic dictionaries are available.

Summary

After defining the notion tagging and giving an overall view of typical solu-
tion methods, an approach on the basis of n-grams is explained more closely.
With regard to the demand for efficiency of computing time and memory the n-
transformation is introduced to organize economically the extensive data quantity
which comes into being while training. Also an extended version of the Viterbi
Algorithm, disseminated in several fields of information technology, is realized by
means of the n-transformation. Mathematically modeling statistic characteris-
tics of the input material, the processing time behaviour is formally described.
Besides a parallelization strategy is stated and its positive effect on the necessary
calculation time is proven. With the help of examples the function of these algo-
rithms is illustrated.
In the second part of this work synther’s (the designation of Papageno’s new
tagging module) mode of operation and its integration into the TTS system are
shown. After checking the fulfillment of further demands on taggers (robustness,
adaptability, multilinguality) the attention is directed to synther’s exactness
resp. tagging errors by comparison with other taggers. Several improvement pro-
cedures are introduced and finally an outlook on future measures and tagging
applications is given.

This Work Online

Authorized collaborators of the Dresden University of Technology resp. of SIE-
MENS CT IC 5 can have a look at an online version of this work, synther’s
source code and its manual in the internet:

http://www.synther.de

Please contact the author in order to receive the necessary password.
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Chapter 1

Foundations

1.1 Why Tagging?

Similar to the body of mathematical rules, which makes possible intelligible, for
scientists, engineers and a multitude of further users, unrenounceable and above
all unmistakable expressions, natural languages dispose of a fundamental formu-
lary that generally has come into being as result of several very ambitious men’s
efforts for purity and well-shape of language1. Putting a stop to the annoyed
evolution of formally undescribed languages2 already the elementary school con-
fronts its pupils with an extensive body of rules and regulations. An instance is
the determination of grammatical category, case, number, gender3 etc. of words
in the sentence context, technically said: their tagging.

The endeavors to utilize the meanwhile sufficiently described natural lan-
guages for human-machine communications brought the subject tagging onto the
agenda again: Looking at speech synthesis applications for instance in several
languages we meet words (gen. text units) whose pronunciation depends on their
category-features-combination. Here we have some German examples: 4

text unit pronunciation exemplary c.-f.-combination
1984 neunzehnhundert-

ADJJ4

vierundachtzig

eintausendneun-
ADJC

hundertvierundachtzig

1E.g. the endeavors of the Fruchtbringende Gesellschaft to standardize the German spelling
and grammar cf. [Ko64]

2The early definition of the Latin grammar seems to be the reason why it is true that
we are able to understand Cicero’s philosophic educational writings by means of ”scanty”
Latin knowledge, but interpreting medieval Old High German poems turns out to be almost
impossible for a native speaker.

3In the following designated as category and features resp. category-features-combination.
4This tag set is explained in the appendix.
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text unit pronunciation exemplary c.-f.-combination
1. erste ADJO:neMy

erstem ADJO:deMx

Ersten NOMEN:nmF

erstens ADV

. . .

u. Ä. und Ähnliche CONJ NOMEN:nmN

und Ähnliches CONJ NOMEN:neN

Status ["Sta:tUs] NOMEN:neM

[Sta"tu:s] NOMEN:nmM

Knie [kni:] NOMEN:neN

["kni:@] NOMEN:nmN

Table 1.1: Pronunciation of some words in dependence on the c.-f.-combination

This table illustrates how useful a tagger (an algorithm that assigns unique c.-
f.-combinations to the words of an input sequence) can be in cases of ambiguous
pronunciation variants.

Besides in text-to-speech systems tagging results are utilized as input data
for the prosody generation: With the help of these data e.g. the Papageno TTS
system (cf. [Ro00]) determines the position of symbolic prosody marks (phrase
accent etc.), the fundamental frequency at syllable level and the sound duration of
each phoneme. The methods explained in this work are partially implemented in
the C-program synther and included in the Papageno system. Other common
tagger applications are

➞ speech recognition,

➞ information retrieval,

➞ disambiguation of meaning,

➞ lexicography and

➞ automatic translation.

The great number of application fields points to just as many different kinds of
taggers. They generally can be distinguished regarding their

➡ target domain

➞ morphological,

➞ syntactic,

➞ semantic and

➞ POS (part-of-speech) taggers

2



and their

➡ implementation approach

➞ rule-based and

➞ statistic taggers, the latter being based on

➝ neural networks

➝ Hidden-Markov-Models (HMM) or

➝ n-grams.

In this work an n-gram POS tagger is designed and optimized regarding the
requests formulated in [Cu92]:

➀ robustness:
it is to process any input (including unknown words, special characters),

➁ efficiency:
it has to be economical of memory and computing time,

➂ exactness:
it works with a low error rate (<5%) and

➃ adaptability:
it can easily be introduced into different application fields

and besides

➄ multilinguality:
it is to be adaptable to any language.

1.2 The n-Transformation

1.2.1 Motivation

Apart from several well-tried n-gram handling approaches there is a very efficient
procedure being based on the n-transformation developed by the author which is
implemented for the first time in the above mentioned Papageno TTS system.
Here this method is to be shortly commented upon.

For the generation of n-gram5 statistics we need an input symbol sequence to
be analyzed:

S = [S1, . . . , Si, . . . , Simax ]. (1.1)

5The general definition of the notion n-gram can be found in [Ho98].
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These symbols derive from a set with xmax different symbols6:

~S > = (S1 · · · Sx · · · Sxmax). (1.2)

In S several frequencies are counted:

f>
1

= (f1 · · · fxmax) (1.3)

is a vector containing the occurrence frequencies of the symbols Sx,

f
2

:=



f1,1 · · · f1,xmax

...
...

fxmax,1 · · · fxmax,xmax

 (1.4)

is the transition frequency matrix of two symbols, and analogously we have the
tensors

f
3
, . . . , f

ν
, . . . , f

n
(1.5)

representing the transition frequencies of νth order.
To store the complete set f

1
, . . . , f

n
we would have to make memory available

for

σ =
n∑

ν=1

(xmax)
ν = xmax

(xmax)
n − 1

xmax − 1
(1.6)

frequency values, for instance 466 GB to generate a trigram language model based
on 5000 different words and 32-bit frequency numbers. This example extremely
contradicts the demand ➁ on taggers (cf. section 1.1).

1.2.2 The Forward Transformation and Its Conditions

The n-transformation is used to replace the index-vectors of frequency tensor
elements. Representing the indices of the element fx1,...,xν contained in f

ν
it is

defined as follows:

n(x1, . . . , xν) =
ν∑

k=1

xk · x̂ν−k. (1.7)

This equation called forward transformation7 is a one-to-one mapping be-
tween the ν-tuple (x1 · · · xν)

> and the natural number n(x1, . . . , xν):

(x1 · · · xν)
>� n(x1, . . . , xν). (1.8)

6Each form of the variable x, here utilized as simple index, will be element of the set of
whole numbers: x, xmax, xν , x̂ etc. ∈W = {0, 1, 2, . . .}.

7The inverse n-transformation is discussed below.

4



Very important with regard to the advantageous computing operations in the
map domain of the n-transformation is the satisfaction of the condition

x̂ > xmax. (1.9)

In doing so we have to take into consideration that n(x1, . . . , xν) must not exceed
a limit stipulated by the bit-width βn of the designated data type:
The request

n(x1, . . . , xν) < 2βn (1.10)

and the relation

n(x1, . . . , xν) ≤
n∑

k=1

xmax · x̂n−k = xmax
x̂n − 1

x̂ − 1
(1.11)

result in the final demand

xmax
x̂n − 1

x̂ − 1
< 2βn . (1.12)

By means of these two equations we can estimate the minimum bit-width of the
data type used to store the n-values:

βn > ld((xmax + 1)n − 1). (1.13)

If this requirement is met we can calculate closed solutions of x̂’s upper bound
for n ≤ 5. Here they are displayed for n ≤ 3:

n value range of x̂
1 xmax < x̂

2 xmax < x̂ < 2βn

xmax
− 1

3 xmax < x̂ <
√

2βn

xmax
− 3

4
− 1

2

Table 1.2:
Value Range of x̂

Now we introduce a hash table which includes each frequency of the tensors
f

1
, . . . , f

n
unequal to zero and their indices’ n-transforms sorted after the latter’s

size (the first column merely serves for clearness):f fh 8

ν n(x1, . . . , xν) f(n(x1, . . . , xν)) B fx1,...,xν

1 n(1) = 1 f(n(1))
n(2) = 2 f(n(2))
. . .
n(xmax) = xmax f(n(xmax))

2 n(x1, x2) = x1x̂ + x2 f(n(x1, x2))
n(•1, •2)8 f(n(•1, •2))
. . .

. . .
n n(•1, . . . , •n) f(n(•1, . . . , •n))

Table 1.3:
Frequency Hash Table

8•k replaces any x in the kth place.
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1.2.3 An Instance

Now it is time to illustrate the forward transformation by an example. We look
at the symbol sequence

S = [C, A,D,C,D,B,D,B,D,D, A] (1.14)

which is to be training material of a trigram, i.e. n = 3. The first step is to
determine the present symbol set; we get in order of their appearance

~S > = (S1 · · · Sxmax) = (C,A, D, B). (1.15)

This implies the correlation between the symbols and their indices as well as their
number: xmax = 4. The prescribed machine-intern n-data type disposes of 8 bit,
thus after checking the requirement (1.13) we are able to determine the value
range of x̂ using the third line of table 1.2:

4 < x̂ < 7.45 −→ x̂ ∈ {5, 6, 7} (1.16)

After choosing x̂ = 6 we scan the input sequence counting all occurrence and
transition frequencies up to ν = 3, calculate the n-transforms and size them into
the hash table (the first two columns are merely included to simplify the insight,
the last is to be used in section 1.3.3):

ν partial sequence n(x1, . . . , xν) f(n) f̃(n)

1 [C] 1 2 110
[A] 2 2 110
[D] 3 5 255
[B] 4 2 110

2 [C, A] 8 1 0
[C, D] 9 1 0
[A,D] 15 1 0
[D, C] 19 1 0
[D, A] 20 1 0
[D, D] 21 1 0
[D, B] 22 2 110
[B, D] 27 2 110

3 [C, A, D] 51 1 0
[C, D, B] 58 1 0
[A,D,C] 91 1 0
[D, C, D] 117 1 0
[D, D, A] 128 1 0
[D, B, D] 135 2 110
[B, D, D] 165 1 0
[B, D, B] 166 1 0

Table 1.4:
Example Statistics

6



1.2.4 Computing Time Behaviour

Since each new frequency entry into the hash table consists of merely two values
the demand for memory efficiency is met. Now we want to view the computing
time behaviour of this procedure.
The standard method to find an entry in a sized hash table with the lines number
σt is the binary search (v. [Ni00]). Beginning in the middle of the table we either
strike directly on the sought n-transform or can decide in which table half the
search must be continued. The same procedure is carried out in this part, etc.
So the maximum number of searching steps can be computed by 9

σs,max = int(ld(σt)) + 19. (1.17)

This formula constitutes a good estimation of the seeking step number’s expecta-
tion on the strength of a relatively great number of records that are not contained
in the table, i.e. whose frequency is zero. A short sufficiency proof of the estima-
tion

E(σs) ≈ σs,max (1.18)

is given here: Assuming that all sought records are contained in the table and
all entries are looked for with the same probability pr = 1

σt
we directly hit on

the record searched for with the likelihood p(σs = 1) = pr. Otherwise we need
a second step and continue our search in the determined table half, where we
strike on the correct n-value with the estimated probability p(σs = 2) = 1

σt
2

, and

so on. The likelihood of needing σs,max steps can be assessed by the probability
principle

σs,max∑

k=1

p(σs = k) =
1

σt

(
1 + 2 + 22 + · · ·+ 2σs,max−2

)
+ p(σs = σs,max) = 1 (1.19)

which is converted into

p(σs = σs,max) = 1 − 2σs,max−2

σt


∞∑

k=0

(1
2

)k
− 1

2σs,max−1

∞∑

k=0

(1
2

)k

= 1 +
1

σt

(
1 − 2σs,max−1

)
.

(1.20)

Now the expectation of σs can be calculated:

E(σs) =

σs,max∑

k=1

k · p(σs = k)

=
1

σt

σs,max−1∑

k=1

k · 2k−1 + σs,max +
σs,max

σt

(1 − 2σs,max−1)

=
1

σt

(1 + σs,max − 2σs,max) + σs,max.

(1.21)

9int(r) is the integer part of the real number r and ld(r) = log2 r.
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Introducing an approximation for big tables (σt � 1) we get

E(σs) ≈ σs,max − 2σs,max

σt

. (1.22)

The difference term between result (1.22) and the assertion (1.18) is

∆E = −2σs,max

σt

(1.23)

whose bounds we calculate as follows:
When we replace σt by the real number r we can regard ∆E as a function of r
with the aid of (1.17):

∆E(r) = −2int(ld(r))+1

r
. (1.24)

Between the jumps of the int-function the numerator of ∆E(r) is constant, the
function itself is monotone. It remains the examination of the discontinuity
points: r = 2w ± ε with w ∈ W and ε ∈ R. Inserting this substitution into
(1.24) and computing the lower and upper limit for ε towards zero we get

lim
ε→0

∆E(2w + ε) = −2 resp. lim
ε→0

∆E(2w − ε) = −1. (1.25)

Accordingly the greatest expected deflection between the approximation value of
(1.18) and the actual one are two searching operations.

To investigate the computing time behaviour of this storage method a gen-
eral model of the n-gram composition is to be introduced: In 1935 the linguist
George Kingsley Zipf proposed a law that describes the occurrence proba-
bilities of words in natural languages [cf. Le02]:

pzipf (St) =
A

B + t
. (1.26)

Here A and B are constants depending on the language and pzipf (St) is the
estimated likelihood of the tth most probable word. On the basis of an example is
to be made plausible that this law is also suitable for modeling the n-hash table:

➞ 1660 sentences of the Frankfurter Allgemeine Zeitung (FAZ) with
imax = 42201 words,

➞ tag set of xmax = 215 symbols,

➞ trigram analysis (n = 3).

As result we get an n-hash table with tmax = σt = 14312 entries, thus we can
estimate the Zipf constant A assuming that B is negligibly small: 10

B = 0 y A ≈ 1

ln(σt) + C
= 0.09910. (1.27)

10cf. [Sü01] p. 24; C is the Euler constant: C = 0.57721566 . . ..

8



The following graphic demonstrates the resemblance of the real frequency distri-
bution f(nt) and the predicted one fzipf (nt) = jmax · pzipf (nt)

11:

Figure 1.1: Modeling the Frequency Distribution of the Hash Table

Now we consider the jmax n-transforms which were arranged into the table during
the training to be a sequence of tmax different symbols:

n = [n1, . . . ,nj, . . . ,njmax ] ; (1.28)

in doing so each symbol is to be uniformly distributed within this sequence. Here
this arrangement is illustrated by means of the symbol nt:

Figure 1.2: Uniform Distribution of the Symbol nt

.

11jmax = n · (imax − n+1
2 ) is the sum of all frequencies in the hash table.
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On the above conditions the first appearance of the symbol nt is expected in the
place (utilizing equation (1.26) with B = 0)

j ≈ jmax

2f(nt)
=

t

2A
. (1.29)

When the tth symbol emerges, the table has a size of σt = t records, thus the
latter can be estimated in dependence on the current index j. However we must
not forget the maximum table size prescribed by Zipf’s constant A (cf. formula
(1.27)) that results in a switching index js:

σt(j) ≈


2Aj for j ≤ js

e
1
A−C else

with js ≈ e
1
A−C

2A
(1.30)

The total computing expenditure to produce the table is composed of the search-
ing part and a part that calculates the jmax n-transforms:

σΣ = σΣ, s + σΣ,n . (1.31)

Replacing (1.17) by its real number representation σs = int(ld(σt)) + 1 ≈ ld(σt)
we get12

σΣ, s ≈
jmax∑

j=1

ld(σt(j)) =

js∑

j=1

ld(2Aj) +

jmax∑

j=js+1

ld(e
1
A−C)

= ld

js∏

j=1

2Aj + σΣ, sII = ld((2A)jsjs!) + σΣ, sII

with σΣ, sII = (jmax − js)(
1

A
− C)

1

ln 2
.12

(1.32)

Consulting the Stirling formula (v. [Br96])

w! ≈
√

2πw
(w
e

)w
(1.33)

equation (1.32) becomes

σΣ, s ≈ ld
√

2πjs + jsld
2Ajs

e
+ σΣ, sII . (1.34)

As modern processors need double the time of an integer addition to execute a
multiplication the operations number to compute an n-value is σn = 2ν + (ν − 1)
(cf. (1.7)). Since most of the table records are of the order n merely setting ν = n
for all jmax computations is reasonable:

σΣ,n < jmax · (3n − 1) . (1.35)

12In case of js > jmax the value of js must be replaced by jmax.

10



The first addend of (1.34) is negligible for great jmax so finally we have

σΣ(jmax) ≈



jmax(ld
Ajmax

e
+ 3n) for jmax ≤ js

jmax


1
A
− C

ln 2
+ 3n − 1

 − js

ln 2
else

(1.36)

Looking at the above instance the computing expenditure is to be estimated.
First we calculate the sum of all hash table frequencies13

jmax = 126 597 (1.37)

and the switching index (cf. (1.30))

js ≈ 72 605. (1.38)

On the strength of these conditions the second line of equation (1.36) is chosen:
14

σΣ ≈ 2 655 692 ops13. (1.39)

1.2.5 Parallelization

The strong demand for ever increasing computing velocity on the one hand and
the processor speed limitation because of physical realities on the other have stim-
ulated extensive discussions about the parallelization of mathematical algorithms.
One possibility to continue the way of exponential performance development is
the employment of multiprocessor computers.

Creating n-gram statistics with the help of the n-transformation can be dis-
tributed as follows: Instead of sequentially making one table analyzing imax input
symbols now separately m hash tables are produced, each of them processing
imax

m
input symbols. After the training they are combined utilizing a simple

scanning procedure which is to be explained on the basis of two sorted lists:
A = {a1, a2, . . .} and B = {b1, b2, . . .}.

➀ a1 is taken and B is scanned from its start until the first element bi greater
than a1.

➁ a1 is inserted in front of bi.

➂ Now the next element of A is taken and the scanning goes on starting at
the place of the last inserted element.

➃ This action is continued until the end of A.

Again this method is realizable in parallel manner: When we have m = 2µ tables,
2µ−1 combinations of two tables are shaped simultaneously. 2σt(

jmax

2µ )15 compar-

13v. footnote 11.
14ops means processor operations.
15Two lengths of a table including the information of merely imax

m input symbols.
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isons and at the most half this number for summing up the frequencies of records
with equal n-values are needed. In the next step again always two of the hash
tables which have come into being are combined consuming less than σt(

jmax

2µ−1 )
additions plus twice as many comparisons etc. Finally the combining duration
can be estimated by the following operations number (cf. equation (1.30)):

σΣ, c ≈ 3

µ∑

k=1

σt(
jmax

2k
) ≤ 3

µ∑

k=1

2Ajmax

2k
= 6Ajmax(1 − 1

m
) . (1.40)

Proceeding on the assumption that the computing time of each task processing
one table part is nearly the same, the final expenditure is merely

σΣ‖ = σΣ(
jmax

m
) + σΣ, c . (1.41)

The ratio between the operations number employing merely one processor and
that of the parallel architecture is a useful quantity:

σΣ

σΣ‖
=

σΣ(jmax)

σΣ( jmax

m
) + σΣ, c

, (1.42)

and looking at formulas (1.36) and (1.40) we notice its limit as m approaches
infinity; in doing so the quotient jmax

m
is held constant:

lim
m→∞

jmax
m =c.

σΣ

σΣ‖
=

1
A−C
ln 2

+ 3n − 1

6A
. (1.43)

Finally we discuss a practical instance: A 5-gram is to be developed on the
basis of an input symbol vector with one million elements. The symbol set is
strongly limited, thus the expected maximum hash table size is merely σt =
200 000. Searched for is the operations number σΣ using the sequential mode and
the acceleration ratio σΣ

σΣ‖
if a high performance computer with 16 processors is

employed.

→ The first step is to lay down jmax ≈ n · imax = 5 000 000;

→ A ≈ 0.078 arises from (1.27);

→ because js ≈ 1 278 329 < jmax (v. equation (1.30)) the second line of (1.36)
is utilized and we get σΣ(jmax) ≈ 156 · 106 ops;

→ now we want to calculate σΣ( jmax

m
) and notice that jmax

m
= 321 500 is less

than js, so this time we fall back on the first line of (1.36): σΣ( jmax

m
) ≈

8.79 · 106 ops;

→ the last step is to estimate σΣ,c ≈ 2.2 · 106 ops by formula (1.40)

→ and we get the ratio sought for: σΣ

σΣ‖
≈ 14.2 .
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1.3 Viterbi Algorithm of nth Order Utilizing the

n-Transformation

1.3.1 Motivation

Many tasks in several engineering sciences require an algorithm which determines
the most probable path through a symbol grid. For example methods of error
protection coding, of object processing or speech recognition call for effective
approaches to solve this problem. We will see that such strategies also represent
an important part of the realization of n-gram taggers. Here we want to look
at a symbol grid that consists of ımax symbol hypothesis vectors of the lengths
hmax = {h1

max, h
2
max, . . . , h

ımax
max }:

S = (~S1, ~S2, . . . , ~Sımax) =





Sx1
1

...
Sx1

h1
max


, . . . ,



Sxımax
1
...

Sxımax
h

ımax
max




. (1.44)

In the following merely the symbol indices xı
hı are viewed. Each element of

vector ~x ı is connected with each of vector ~x ı+1; other edges are forbidden. On
this condition the number of different paths from ~x 1 to ~x ımax is

σp =
ımax∏

ı=1

hı
max . (1.45)

Here an example grid with the vector lengths hmax = {2, 3, 1, 2, 4} is displayed;
the above formula results in 48 different paths:

Figure 1.3: Example Grid

Every path stands for a symbol chain of the length ımax, e.g. the red path of
Figure 1.3 corresponds to the index sequence

x = [x1
2, x

2
3, x

3
1, x

4
2, x

5
2] . (1.46)
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To simplify matters in the following we want to utilize the definition xı B xı
hı if

it is not expressly annulled. So the probability of a sequence x = [x1, . . . , xımax ]
utilizing the results of n-gram statistics can be estimated by means of (cf. [Sü01]):

p(x) =
n−1∏

k=1

p(xk|x1, . . . , xk−1)
ımax∏

l=n

p(xl|xl−n+1, . . . , xl−1)

with p(xı|x`, . . . , xı−1) = p(xı) for ` = ı .

(1.47)

Special cases of this equation for the orders n = 1 . . . 3 can be found in [Be99]:

n p(x)

1
ımax∏
ı=1

p(xı)

2 p(x1)
ımax∏
ı=2

p(xı|xı−1)

3 p(x1)p(x2|x1)
ımax∏
ı=3

p(xı|xı−2, xı−1)

.

Table 1.5:
Estimated Likelihood of the
Sequence x in Dependence
on the Maximum Order n

In section 1.2.1 we found that we generally do not store the probabilities needed
in (1.47) but the frequencies which can be used to estimate the first-mentioned
by shaping the relative frequencies: The occurrence likelihood arises from

p(xı) ≈ f(xı)

imax

(1.48)

and the transition probability is

p(xı|x`, . . . , xı−1) =
p(x`, . . . , xı)

p(x`, . . . , xı−1)

≈ f(x`, . . . , xı) · (imax − ı + 1 + `)

f(x`, . . . , xı−1) · (imax − ı + `)

(` < ı) . (1.49)

On these conditions equation (1.47) becomes

p(x) ≈ c
n−1∏

k=1

f(x1, . . . , xk)

f(x1, . . . , xk−1)

ımax∏

l=n

f(xl−n+1, . . . , xl)

f(xl−n+1, . . . , xl−1)

= c · f(x1, . . . , xn−1)
ımax∏

l=n

f(xl−n+1, . . . , xl)

f(xl−n+1, . . . , xl−1)

with f(x`, . . . , xı) = 1 for ` > ı and c =


1 for n = 1

(imax−n+2)ımax−n

(imax−n+1)ımax−n+1 else

(1.50)
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The determination of the most probable path through the symbol grid is express-
ible with the help of

xp = arg max
x1

h1
|h1=1,...,h1

max

...
x

ımax
hımax |hımax=1,...,h

ımax
max

p(x) .

(1.51)

Analogously to the behaviour of the relation sign of inequations, the arg max
operation ignores additions and multiplications with positive constants within its
argument, thus the factor c in formula (1.50) can be omitted. Besides the uti-
lization of logarithms to replace the great number of multiplications by additions
in order to halve the computing expenditure seems to be advantageous. E.g.
the Papageno tagger synther uses the following technique: While training, the
hash table’s frequencies are logarithmically converted and normalized to exhaust
the stipulated data field. When βf̃ is the bit-width of the data type receiving the
converted values, these steps can be expressed formally by

f̃(nt) ≈ (2βf̃ − 1)
ln f(nt)

ln max
t=1,...,σt

f(nt)
. (1.52)

Now the new quantity $(x) which does not agree with a probability anymore
takes the place of the estimated likelihood p(x):

$(x) =
ımax∑

ı=n

$ı(n(xı−n+1, . . . , xı),n(xı−n+1, . . . , xı−1)) (1.53)

with $ı(nI,nII) =



0 for ı < n

f̃(nI) for ı = n

f̃(nI) − f̃(nII) else

; (1.54)

in doing so f̃(n(x`, . . . , xı)) = f̃(0) = 0 for ` > ı .

It is true that the number of operations to determine the result of (1.51) already
has been strongly reduced by the above reflections but even the current size is
unacceptable:

σΣ,p = 2σp(ımax − n + 1) . (1.55)

To assess this number’s proportions the expectation of hmax is necessary:

E(hmax) =
xmax∑

k=1

p(hmax = k) · k , (1.56)
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furthermore the expectation of σp results from

E(σp) = E(
ımax∏

ı=1

hı
max) =

xmax∑

k1=1

xmax∑

k2=1

· · ·
xmax∑

kımax=1

ımax∏

ı=1

p(hı
max = kı) · kı . (1.57)

When the individual hı
max are independent of each other and of their horizontal

position (expressed by the index ı), this expression can be simplified:

Ei(σp) =


xmax∑

k=1

p(hmax = k) · k

ımax

= E(hmax)
ımax . (1.58)

In tagging applications the number of ambiguous category-features-combinations
of a word Si corresponds to its hi

max. Returning to the instance of 1.2.4 we have
imax = 42201 and the following frequency distribution:

Figure 1.4: Frequency Distribution of hmax

In this example we guess E(hmax) ≈ 5.2, and prescribing the small grid-length
ımax = 10 we expect Ei(σp) ≈ 14 · 106 (14 million different paths).

1.3.2 Viterbi Algorithm

In view of the huge number of grid paths it is not recommendable to follow each
of them. The principle of the Viterbi Algorithm (also designated as Dynamic
Programming) shows how to reduce the path variety and nevertheless find the
most probable way. In relevant literature (e.g. [Ho98]) this approach is discussed
for bigrams, here is to be developed a method of any order n ≥ 1 which falls back
on the n-transformation.
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First some agreements are reached: The designation of vector elements

~v = (v1 v2 · · · vmax)
> (1.59)

and the vector-of-vectors dissolution

(
~v
~w

)
=



v1
...

vmax

w1
...

wmax



(1.60)

are prearranged, besides a vector-scalar addition is introduced

~v + s =



v1 + s
...

vmax + s

 . (1.61)

Some further scalar operations (like division etc.) are applied to vectors by car-
rying them out element by element.
Now some preconditions are defined

~n∗ 0 = (0), ~$∗ 0 = (0), hı
max = 1 for ı < 1 (1.62)

and the forward-part of the Viterbi Algorithm is executed recursively for ı ∈
{1, . . . , ımax} particularly using equation (1.54):

➀ The n-Vector

~n ı =



x̂~n∗ ı−1 − x̂n(~n∗ ı−1 div x̂n−1) + xı
1

...

x̂~n∗ ı−1 − x̂n(~n∗ ı−1 div x̂n−1) + xı
hı

max

 (1.63)

➁ The Converted Frequency Vector

~$ı =



~$∗ ı−1
...

~$∗ ı−1

 + $ı(~n ı, ~n ı div x̂) (1.64)
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➂ The Reduced Index Vector

~k∗ ı =



arg max
k1=1,...,hı−n+1

max

$ı
k1

arg max
k2=hı−n+1

max +1,...,2hı−n+1
max

$ı
k2

...
argmax

klı=(lı−1)hı−n+1
max +1,...,lı·hı−n+1

max

$ı
klı



with lı =
ı∏

k=ı−n+2

hk
max (1.65)

➃ The Reduced n-Vector

~n∗ ı = (nı
k∗ ı1
· · · nı

k∗ ı
lı
)> (1.66)

➄ The Reduced Converted Frequency Vector

~$∗ ı = ($ı
k∗ ı1
· · · $ı

k∗ ı
lı
)> (1.67)

After finishing these recursions the final n-transform of the most probable se-
quence xp is determined by

nımax
p = n∗ ımax

k
with k = arg max

l=1,...,lımax

$∗ ımax

l
. (1.68)

nımax
p is directly convertible into the last n symbol indices by means of the inverse
n-transformation explained below:

xı
p = (nımax

p div x̂ımax−ı) mod x̂ for ı ∈ {ımax − n + 1, . . . , ımax} . (1.69)

Generally the symbols for ı ∈ {ımax − 1, . . . , 1} result from the again recursive
Viterbi back-tracking:

➀ The n-Transform

nı
p = n∗ ık with k = l| n∗ ıl mod x̂n−1 = nı+1

p div x̂ . (1.70)

➁ The Symbol Index
xı

p = nı
p mod x̂ (1.71)

The Viterbi Algorithm highly cuts down the great variety of included paths which
now is represented by the dimension number of the n-vector. Its expectation is
analogously to (1.58)

Ei(σp,V ) = E(hmax)
n . (1.72)
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1.3.3 Examples

Since the last section’s formulas eventually appear to be quite difficult to the
reader, now they are underpinned by some examples. As basis statistics we want
to utilize those of section 1.2.3, where the converted frequencies already are reg-
istered for a bit-width of βf̃ = 8 (cf. equation (1.52)). Besides the example grid
of 1.3.1 with the following symbol index assignment is used:

Figure 1.5: Example Grid

Now the calculations for the orders n ∈ {1, 2, 3} are realized and documented in
the form of a table (to simplify matters the converted frequency f̃fl → −∞ is as-
signed to an n-transform which was not seen during the training; a more accurate
approach is discussed in the next chapter):
a
n status

1 forward- ı ~n ı ~$ı ~k∗ ı ~n∗ ı ~$∗ ı

part 1 (2 3)> (110 255)> (2) (3) (255)
2 (2 3 4)> (365 510 365)> (2) (3) (510)
3 (3) (765) (1) (3) (765)
4 (1 4)> (875 875)> (1) (1) (875)
5 (1 2 3 4)> (985 985 1130 985)> (3) (3) (1130)

back- ı nı
p xı

p

tracking 5 3 3
4 1 1
3 3 3
2 3 3
1 3 3

result: xp,n=1 = [3, 3, 3, 1, 3]
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a

n status

2 forward- ıa ~n ı ~$ı ~k∗ ı ~n∗ ı ~$∗ ı

part 1 (2 3)> (0 0)> (1 2)> (2 3)> (0 0)>

2



14
10
15
21
16
22





f̃fl

0
0
0

f̃fl

110




2
3
6




20
15
22




0
0

110



3 (15 21 27)> (−110 −255 110)> (3) (27) (110)
4 (19 22)> (−145 −35)> (1 2)> (19 22)> (−145 −35)>

5



7
25
8
26
9
27
10
28





f̃fl − 255

f̃fl − 145
−255

f̃fl − 145
−255
−35

f̃fl − 255

f̃fl − 145





2
3
6
8





25
8
27
28





f̃fl − 145
−255
−35

f̃fl − 145



back- ı nı
p xı

p

tracking 5 27 3
4 22 4
3 27 3
2 22 4
1 3 3

result: xp,n=2 = [3, 4, 3, 4, 3]

3 forward- ı ~n ı ~$ı ~k∗ ı ~n∗ ı ~$∗ ı

part 1 (2 3)> (0 0)> (1 2)> (2 3)> (0 0)>

2



14
10
15
21
16
22





0
0
0
0
0
0





1
2
3
4
5
6





14
10
15
21
16
22





0
0
0
0
0
0



3



87
123
93
129
99
135





f̃fl

f̃fl

f̃fl

f̃fl

f̃fl

110




1
3
6




87
93
135




f̃fl

f̃fl

110
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2 2 ı ~n ı ~$ı ~k∗ ı ~n∗ ı ~$∗ ı

4



91
127
163
94
130
166





f̃fl

2f̃fl

f̃fl

2f̃fl

f̃fl

0



(
1
6

) (
91
166

) (
f̃fl

0

)

5



115
133
116
134
117
135
118
136





2f̃fl

f̃fl − 110

2f̃fl

f̃fl − 110

f̃fl

0

2f̃fl

f̃fl − 110





1
2
3
4
5
6
7
8





115
133
116
134
117
135
118
136





2f̃fl

f̃fl − 110

2f̃fl

f̃fl − 110

f̃fl

0

2f̃fl

f̃fl − 110



back- ı nı
p xı

p

tracking 5 135 3
4 166 4
3 135 3
2 22 4
1 3 3

result: xp,n=3 = [3, 4, 3, 4, 3]

Table 1.6: Viterbi Algorithm Instances for Unigram, Bigram and Trigram

1.4 Formulas of the n-Transformation

Here a few calculation rules of the n-transformation are collected. One of them
is exemplarily proven after the list.

• Conditions

~x = (x1 · · · xν)
>; ~x ı = (xı · · · xı+ν−1)>; xk ∈ {1, . . . , x̂ − 1} (1.73)

• Forward Transformation

n =
ν∑

k=1

xk · x̂ν−k (1.74)
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• Inverse Transformation

~x =



n div x̂ν−1
...

(n div x̂ν−k) mod x̂
...

nmod x̂



with k = 1, . . . , ν (1.75)

• Calculation Rules

– Linearity16

a · ~x + b · ~y � a · nx + b · ny
15 (1.76)

– Shortening

(x1 · · · xν−k)> � n div x̂k; k ∈W

(xν−k+1 · · · xν)
> � nmod x̂k; k ∈W ∧ k ≤ ν

(1.77)

– Shift

~x ı+1 � x̂ nı −x̂ν(nı div x̂ν−1) + xı+ν

~x ı−1 � nı div x̂ + x̂ν−1 · xı−1
(1.78)

• Example Correspondences

– Geometric Series

(1 · · · 1)> �
1 − x̂ν

1 − x̂
(1.79)

– Binomial Series

(1 · · · ν)> �
ν − x̂ − νx̂ + x̂ν+1

(1 − x̂)2
(1.80)

– Alternating Series17

(1 · · · (−1)ν−1)> �
1 − (−x̂)ν

1 + x̂
(1.81)

– Pascal’s Triangle

(1 1)> � n y

(1 2 1)> � n2

(1 3 3 1)> � n3 etc.

(1.82)

16On condition that a · xk + b · yk ∈ {1, . . . , x̂ − 1} for k ∈ {1, . . . , ν}.
17As negative values within ~x are not allowed, this correspondence merely should be used in

coherence with the linearity rule in order to return into an admissible range of values.
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As an instance the validity of the forward shift rule is to be proven. For that
purpose in the first place the n-transforms of ~x ı and ~x ı+1 are computed:

nı =
ı+ν−1∑

k=ı

xk · x̂ı+ν−1−k , (1.83)

nı+1 =
ı+ν∑

k=ı+1

xk · x̂ı+ν−k . (1.84)

Executing the div-operation on nı we get

nı div x̂ν−1 =

xı · x̂ν−1 +
ı+ν−1∑

k=ı+1

xk · x̂ı+ν−1−k
 div x̂ν−1 = xı (1.85)

since

ı+ν−1∑

k=ı+1

xk · x̂ı+ν−1−k ≤
ı+ν−1∑

k=ı+1

(x̂ − 1) · x̂ı+ν−1−k = x̂ν−1 − 1 < x̂ν−1 . (1.86)

Now equation (1.78) is consulted

x̂ ·
xı · x̂ν−1 +

ı+ν−1∑

k=ı+1

xk · x̂ı+ν−1−k
− x̂ν ·xı +xı+ν =

ı+ν∑

k=ı+1

xk · x̂ı+ν−k , q.e.d. (1.87)

In conclusion the use of the above calculation rules is demonstrated on the basis
of the n-transform of the vector (ν · · · 1)>:

nν,...,1 �



ν
...
1

 = (ν + 1)



1
...
1

 −


1
...
ν

 � (ν + 1) · n1,...,1 − n1,...,ν y (1.88)

nν,...,1 = (ν + 1)
1 − x̂ν

1 − x̂
− ν − x̂ − νx̂ + x̂ν+1

(1 − x̂)2
=

1 − x̂ν − νx̂ν + νx̂ν+1

(1 − x̂)2
. (1.89)
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Chapter 2

The Application: synther

2.1 synther as a Module of the TTS System

Papageno

The tagger synther consists of two general components:

• the Training Part
This element reads an ASCII-symbol sequence (the training material) of
any length and symbol number. It automatically produces a list (symbol
table) of all emerged symbols and assigns indices to them. Simultaneously
it computes all n-transforms up to the order n and shapes the n-hash table.
Accordingly this approach is application-independent, it can be utilized to
realize several statistics, to construct a language model (when the symbols
are words of a natural language) or as basis of a tagger (here the symbols
are category-features-combinations). In the latter case the procedure is
completely language-independent since it automatically learns its symbol
set by means of the training material.

• and the Viterbi Part
It is a module of the TTS system Papageno between the multilingual text
processing engine that contains the tokenizer1, number handling etc. and
the phonetic transcription module (cf. [Ro00]). As input it expects a symbol
index grid (the indices of the ambiguous c.-f.-combinations of a sentence)
and returns a symbol index sequence representing the disambiguated c.-f.-
combinations. Data basis is the n-hash table created in the training part.

1After separating the unicode input text to be tagged into the individual words, their am-
biguous c.-f.-combinations are determined enlisting a linguistic dictionary. Now this symbol
grid is converted into the desired symbol index grid integrating the symbol table.
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The following figure containing all components directly communicating with syn-
ther’s parts illustrates the principles just commented upon:

Figure 2.1: Connection between synther’s parts and their neighboring com-
ponents

a

2.2 Aphorisms with Reference to synther’s Ex-

actness

a
Returning to the five demands on a tagger formulated in 1.1 we notice that apart
from the efficiency of which a detailed account is given in chapter 1 also the
robustness, adaptability and multilinguality are met, since synther’s design ex-
plained in the last section is totally independent of the nature of training material.
During the operation phase synther merely communicates with its neighbored
modules within the symbol index layer, thus these requests are met here, too. It
remains the examination of item ➂: exactness.
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2.2.1 Maximum and Average Error Rate before Training

It is true that this section’s title sounds paradoxical as we actually possess no
information at all, but the secret is revealed when we bear in mind the linguistic
dictionary which is consulted by the tokenizer while generating the symbol index
grid. In dependence on language and tag set there is a considerable number of
words with one single c.-f.-combination. Their share in the text material to be
tagged during the operation phase determines the maximum error rate which is
expressible with the help of their estimated occurrence probability:

ERmax = 1 − p(hmax = 1) . (2.1)

Invoking the example of 1.2.4 resp. 1.3.1 we get ERmax,1 ≈ 0.542 at xmax,1 = 215
different c.-f.-combinations. Considering essentially less tags the maximum error
rate strongly goes down. The following table shows the hmax-distribution for a
highly reduced tag set of only xmax,2 = 20 different c.-f.-combinations:

k f(hmax = k) p(hmax = k)
1 33015 0.782
2 8412 0.199
3 629 0.015
4 145 0.003

Table 2.1:
Distribution of Frequency Resp.
Estimated Probability of hmax

.

For this tag set the expected maximum error rate amounts to ERmax,2 ≈ 0.218.
The simplest imaginable tagger is a routine that purely coincidentally or ob-

serving a fixed model settles on a possible symbol. In this case we expect an
average error rate of

ER = 1 −
xmax∑

k=1

p(hmax = k)

k
. (2.2)

According to this equation the above instances result in ER1 = 0.410 resp. ER1 =
0.112.

As matters stand the efforts of the next sections are aimed at an essential
improvement of these rates. So the effect of the following measures actually has
to be gauged in relation to the average error rate, however with regard to the
comparability with other taggers the absolute error rate is to be equally consid-
ered.
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2.2.2 The Coherence between Training Material Size and
Tagging Error Rate

Having developed the theory of n-Viterbi Tagging it is time to evaluate synther’s
recognition performance (we should accept this designation in connection with
the determination of correct tags which actually are to be recognized). In litera-
ture, e.g. concerning speech processing, the unanimous opinion that trigrams in
principle represent an error rate improvement as against bigrams is held. In fact
this claim is correct in case of disposing of a certain minimum training material
size. Generally the consideration of wider contexts provides better results if the
n-gram statistics are nearly saturated. The greater the order the more extensive
basis material is necessary to meet this condition. Still in areas of scarcity with
the help of smaller orders it has well-balanced statistics generated. Against this
background the expected course of the family of error rate curves in dependence
on the number of trained symbols imax can be guessed:

Figure 2.2: Expected Tagging Error Rates in Dependence on imax
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Because the mathematical modeling of tagging errors would go beyond the scope
of this work, the above family of curves is intuitively defined by the characteris-
tics worked out in the beginning of this section and within the previous one. In
particular it was set store by the limit situation, after all we have

ERn(imax) = (ER − −−→ERn)e
− 1

n
σl

√
imax
σw +

−−→
ERn . (2.3)

Figure 2.2 corresponds to the parameters

−−→
ER2 = 0.3ER,

−−→
ER3 = 0.2ER,

−−→
ER4 = 0.15ER, σl = 5, σw = 1 .

To illustrate these reflections now the hand-tagged newspaper articles (v. ex-
ample of 1.2.4) serve as basis material for an n-gram training. Consulting 219
sentences of different internet pages, particularly selected to verify the number
pronunciation (cp. section 1.1 and the first two rows of table 1.1) and utilizing
them as test material, the tagging error rates are determined for n ∈ {2, . . . , 4}
and 25 to 1660 training sentences using the small tag set (v. appendix):

Figure 2.3: Real Tagging Error Rates in Dependence on the Number of Training
Sentences

In order to integrate this figure into the previous one the light gray rectangle
of the latter marks the former outlines. It is conspicuous that the training with
more input data (e.g. the tenfold amount) in all probability would essentially
improve the tagging results towards greater orders.
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2.2.3 synther by Comparison with Other Taggers

In section 2.2.1 the strong dependence of the average error rate ER on the tag set
size xmax was shown. Therefore to assess as objectively as possible the different
taggers are subdivided into three classes regarding xmax:

class xmax ER
−−→
ER

small xmax < 50 0.1 0.01
middle 50 ≤ xmax ≤ 200 0.3 0.03
great xmax > 200 0.5 0.05

Table 2.2:
Tagger Classes with
Regard to xmax

.
The parameters ER and

−−→
ER are utilized to draw guessed error rate curves of

these three classes for n = 4 as support into the diagram which documents the
recognition performance of 11 tagger instances:

# tagger ER/% corpus imax xmax source
1[N] synther 12.17[7.59] FAZ 42 201 215
2 TnT 10.78 ’1984’ 81 805 >200 [Dž00]
3 IST 8.1 FAZ 34 912 219 [Wi01]
4 HMM 7.94 Wotan ≈ 750k 233 [Ha01]
5 NN 4.84 MTP ≈ 400k 14 [Ha99]
6 MET 4.44 Wotan ≈ 750k 129 [Ha01]
7 RBT 4.36 ’1984’ 81 805 12 [Dž00]
8 TBL 3.72 WSJ ≈ 1M 48 [Ha01]
9 MBT 2.94 LOB ≈ 1M 170 [Ha01]
10 synther 2.68 FAZ 42 201 20
11 IST 1.2 FAZ 34 912 11 [Wi01]

Figure 2.4:
Different Taggers’
Error Rates in De-
pendence on Their
Class and imax
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To explain this figure’s abbreviations:

FAZ: Newspaper corpus v. section 1.2.4,
TnT: Trigram’n’Tags by Thorsten Brants,
’1984’: George Orwell’s novel (cf. [Or49]),
IST: Iterative Stochastic Tagging suggested by Petra Witschel,
HMM: Tagging approach using Hidden Markov Models,
Wotan: Tag set for Dutch based on the Eindhoven corpus,
NN: Neural Network tagger developed by Horst-Udo Hain,
MTP: Münster Tagging Project corpus,
MET: Maximum Entropy Tagger written by Adwait Ratnaparkhi,
RBT: Rule Based Tagger written by Eric Brill,
TBL: Error-driven Transformation-Based Learning by Eric Brill,
WSJ: Wall Street Journal material,
MBT: Memory-Based Learning proposed by Walter Daelemans,
LOB: Lancaster-Oslo/Bergen corpus

In view of the restricted tag set synther shows its strength by producing better
recognition results (#10) than all the competitors except of the IST (#11).

Still it is true that within the great tag set class synther causes the worst
result (#1), but consulting the related taggers TnT (#2) and HMM (#4) the
main reason seems to be the scarcity of training material. Nevertheless the next
section is to draw up an improvement strategy which is modeled on the excellent
error rates of the IST. Besides it should be mentioned that the development
of synther particularly aims at the number pronunciation (cf. 1.1 and 2.2.2).
Therefore it is a very important fact that the rate of incorrectly recognized nu-
merals turns out to be essentially better (#1N).

2.2.4 Iterative Tagging

In the previous sections the high importance of possessing sufficient training
material was shown. However sometimes we are compelled to deal with a strongly
limited corpus, e.g. in connection with very specific tagging domains. Another
problematic application is the employment of taggers in an area which differs
from the training. Such cases are handled in [Wi01] that especially contains the
fundamental description of the Iterative Stochastic Tagging, stated in 2.2.3, too.
The solution idea when changing over a scantily trained A-tagger to an unfamiliar
domain B that would cause the error rate ER0 is to execute a tagging with a
set of area-B-sample texts. Now this action’s result is basis to generate n-gram
statistics which are combined with those of the old domain A. The current error
rate ER1 if any text of B would be tagged in general is less than ER0. Now we
can realize a second iteration tagging the B-sample set and integrating the results
into further statistics which are combined with the former, and so on. In this
way we step by step adapt the area-A-tagger to the B-samples which should be
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representative of the future application field. Understandably the exaggeration
of this procedure involves a certain danger, since possibly the final statistics are
totally adapted to the iteration samples but hardly recognize deviating substitutes
of the same domain.

However because of synther’s very time-economical algorithms the above
discussed idea could be perfected by carrying out the iterations during the op-
eration phase where the text to be tagged would replace the B-samples. This
consequently requires I enlargements of the n-statistics by imax symbols and I+1
taggings of a sentence with the length imax in case of iterating I times. When we
roughly calculate the computation costs for an enlargement

σe ≈ n · imax · ld(σt) (2.4)

and that of the Viterbi tagging (cp. algorithm description in 1.3.2)

σv ≈ 2imax · (E(hmax)
n · (8 + ld(σt)) + E(hmax)

n−1) , (2.5)

we notice the negligibility of the first term. Thus the execution of one iteration
means one more tagging. So the value of I is to be defined in dependence on the
available computation performance and the requirements of other simultaneously
running tasks.

Here is to be calculated exemplarily the operations number σi for five iter-
ations of a sentence with imax = 10 words assuming a trigram tagger with an
n-hash table of the length σt = 216, the expectation of the ambiguous symbol
number is to be E(hmax) = 4:

σi = I · σe + (I + 1)σv ≈ 188 640 ops . (2.6)

An instance for the significant recognition improvement is shown here:

a

Figure 2.5: Effect
of Iterative Tagging
on the Error Rate
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These example statistics are based on merely 314 sentences of the Münster Tag-
ging Project corpus (mentioned in the previous section) and is iteratively con-
fronted with the same test material as in 2.2.2. After all the error rate was
reduced by more than the fourth part. Also the ineffectiveness of taking great
iteration numbers is evident; in the above instance the best results already are
reached for I = 4. Of course this characteristic depends on the specific training
and test material and should be inspected when adapting the tagger to another
target domain. Likewise the use of greater training and iteration orders than that
of the final tagging has proven its worth.

2.2.5 Floor Value Handling in the Light of Numeral Tag-
ging

As announced in 1.3.3 here is to be probed into the important question about
the handling of events that have not occurred during the training. One would
be inclined to assign the estimated likelihood zero or a small constant value (so-
called floor value) to them, but because of the structure of the path probability
formula (1.50) it is not recommendable: Guessing the conditional probability of
a transition with the order ν we would have to execute a division by zero if the
denominator transition of the order ν − 1 did not occur, too. Also an adequately
small floor value 0 < ffl < 1 could not model the matter appropriately, since the
determined conditional likelihood would get the value ffl

ffl
= 1 which absolutely

does not reflect reality. It is true that a solution is to use floor values ffl,n that
depend on the order n, but at any rate better approaches are conceivable:

Definitely Frédéric Bimbot’s multigrams which represent the likelihood as
a weighted sum of all conditional probabilities with the memory 0 ≤ ν < n is
one of the most intuitive and all-embracing procedures. Through laying down
these weights the quality of the floor value modeling is excellently controllable.
Unfortunately this method is not consistent with the logarithmic frequency rep-
resentation, as in this map domain there is no counterpart of the addition that is
indispensable. Besides, against the background of measures like iterative tagging
the computation expenditure is not acceptable.

Another solution proposal is the punished gradual order decrease until the
denominator frequency is unequal to zero, in doing so the punishment is realized
with the help of a multiplication by a factor between one and zero; in the loga-
rithmic map domain it is equivalent to an addition with the negative addend f̃fl.
Consequently the converted frequency $ı (cp. 1.54) is replaced by a new quantity
which if necessary reduces the current order utilizing the n-shortening rule (1.77):

.
$̃ı(nI,nII) = $ı(nI mod x̂k,nII mod x̂k) + (n − k)f̃fl

with k = max
l=1,...,n

{l| nI mod x̂l ≥ 0} .
(2.7)
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In this connection we are allowed to return to the above zero-likelihood by defin-
ing f̃(n)→ −∞ if n did not occur while training.

Now the significant import of the f̃fl value is demonstrated by means of the
numeral error rate (cf. 1.1 and 2.2.3). To assess objectively the numeral tag-
ging performance, in the first place the maximum and average error rate before
training (v. 2.2.1) are calculated. For that purpose the distribution of estimated
hmax-probabilities exclusively considering numerals in the above test material is
consulted:

k f(hmax,N = k) p(hmax,N = k)
1 30 0.095
2 51 0.161
15 1 0.003
24 228 0.722
25 4 0.013
51 2 0.006

Table 2.3:
Distribution of Esti-
mated hmax,n-Prob-
abilities

.
Utilizing equations (2.1) and (2.2) the sought rates are computable:

ERmax,N ≈ 0.905 , ERN ≈ 0.793 .

Here we notice how indispensable trained knowledge is for the tagging in several
application fields. The next diagram demonstrates the course of the numeral
error rate in dependence on parameter f̃fl:

a

Figure 2.6: Nu-
meral Error Rate
in dependence on
parameter f̃fl
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In this figure f̃fl is normalized concerning the cardinality of the converted fre-
quency’s range of values (2βf̃ ); if f̃fl is negative its impact agrees with a punish-
ment, positive values correspond to a reward. As expected the latter case raises
the error rate to the area of ERN and ERmax,N. However also the punishment
must be of a minimum size to cause a positive effect: f̃fl → −∞ seems to be
a reliable variant (ERN(f̃fl → −∞) ≈ 7.6 %, cp. figure 2.4) but there can be a
local minimum point which results in a better error rate (e.g. in our example
ERN(−5

4
· 2βf̃ ) ≈ 5.7 %).

2.3 Concluding Annotations and Outlook

In accordance with the demands on tagger development phrased in 1.1 the mul-
tilingual tagging system synther is robust, efficient concerning running-time as
well as memory and adaptable. To improve its recognition results several ap-
proaches already have been described. Basically recommendable is a training
with an essentially greater corpus to saturate the statistics and make possible
the consideration of wider contexts. Still evaluating synther’s tagging results,
two error types coming from exactly demonstrable phenomenons were noticed:

The selection of category-features-combinations which are to shape the tag set
must be deliberately executed. An important aspect is the even distribution of
new features among all categories. For instance the introduction of the features
case, number and gender for determiners but not for pronouns turned out to be
a momentous mistake:

Figure 2.7: The German Word ”der”: Estimated Occurrence Probabilities of the
C.-F.-Combinations with Differentiation of Pronoun Features (Left) and without
(Right)
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These diagrams show the effect of asymmetrical feature omission in order to re-

strict the symbol number. With the help of the German word ”der” (
∧
= ”the”,

”that”, ”who”, ”which” etc.) it is demonstrated how significantly the estimated
probability of a category can increase if its features are ignored. In this special
case the Viterbi Algorithm very often falsely settled on pronoun. Even though
the symbol set of the left diagram has a greater potency, better tagging results
came to light.
Also an occasionally disturbing effect is due to the equal weight of all c.-f.-
combinations of a word in the linguistic dictionary. E.g. if the German word
”Tor” is neuter it means ”gate”, ”door”, ”goal” etc. The masculine version
stands for ”fool” and is an obsolete, seldom utilized notion. Nevertheless it is
treated having equal rights because its rareness is considered nowhere. A hand-
some number of tagging errors is attributable to this insufficient modeling. To
remedy things weighted dictionary entries should be introduced, in the course of
which an important condition is anew to be provided with a training corpus of
representative size to determine the required weights reliably.
As further future extensions are to be mentioned

• the forced limitation of the path number considered by the Viterbi
Algorithm:
Indeed the expectation of the included path number is strongly cut down
by the Viterbi Algorithm (cp. equation (1.72)), but in case of great orders
this restriction may not be enough, too. Therefore a forced dimension
limitation of the reduced n-vector (v. (1.66)) with the aid of the most
probable elements of the reduced converted frequency vector (v. (1.67)) is
conceivable.

• end-of-sentence detection with synther:
This approach is rather simple since no program alterations are required,
but the tag set must be slightly modified: Until now we have been utilizing
the symbol ”SI” to declare a secure end of sentence (cf. appendix). When
this information is not given, several punctuation marks in the input text
(like ”.”, ”!”, ”?”, ”:” and so on) indicate a possible end of sentence ex-
pressed by two contradictory symbols, ”SI” and ”NOSI”, which must be
learned during the training phase. For instance German ordinals are com-
pounded by the corresponding cardinal plus the character ”.”. If the ordinal
is located at the end of sentence this punctuation mark and the full stop
merge. Thus when we find a number followed by the character ”.” in the
text to be tagged, three solutions are possible:

ADJC PUNCT SI , ADJO PUNCT SI , ADJO PUNCT NOSI .

By means of the customary Viterbi Algorithm their disambiguation is car-
ried out, at which its limits either are nonambiguous ”SI” symbols or they
are arranged at fixed positions ignoring the sentence frame.
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Appendix A

A.1 Tag Sets

.

# symbol meaning German example
1 ”ACRO” abbreviation SPD
2 ”ADJ” adjective scharfen
3 ”ADJC” cardinal 18000
4 ”ADJJ” year 1984
5 ”ADJO” ordinal 18.
6 ”ADV” adverb demnach
7 ”CONJ” conjunction und
8 ”DET” determiner der
9 ”FOREIGN” foreign word Foreign
10 ”HYPHEN” hyphenated symbol wirtschafts-
11 ”INTJ” interjection Nein
12 ”NOMEN” noun Film
13 ”PDET” preposition-determiner-merge im
14 ”PREP” preposition in
15 ”PRON” pronoun sich
16 ”PUNCT” punctuation mark ,
17 ”SI” secure end of sentence
18 ”VERB” verb müsse
19 ”VPART” verb particle dar
20 ”XINC” Latin word absurdum

.

Table A.1: Small Tag Set, xmax = 20
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# symbol case meaning
1 ”ACRO” ”a” accusative
2 ”ADJ” ”d” dative
3 ”ADJ:”+case+number+gender+strongweak ”g” genitive
4 ”ADJC” ”n” nominative
5 ”ADJJ”
6 ”ADJO:”+case+number+gender+strongweak number
7 ”ADV” ”e” singular
8 ”CONJ” ”m” plural
9 ”DET”
10 ”DET:”+case+number+gender+strongweak gender
11 ”FOREIGN” ”F” feminine
12 ”HYPHEN” ”M” masculine
13 ”INTJ” ”N” neuter
14 ”NOMEN” ”U” indefinite
15 ”NOMEN:”+case+number+gender
16 ”PDET:”+case+number+gender strongweak
17 ”PREP” ”x” strong
18 ”PREP:”+case ”y” weak
19 ”PRON”
20 ”PRON:”+case+person+number+gender person
21 ”PUNCT” ”1” first person
22 ”SI” ”2” second person
23 ”VERB” ”3” third person
24 ”VPART”
25 ”XINC”

.

Table A.2: Great Tag Set, xmax = 3741

For example the German word ”Hauses” corresponds to the symbol ”NOMEN:geN”.

Annotation: These Tag Sets are prescribed by the SIEMENS CT IC 5 speech
synthesis group and are not subject to the author.

.

1Usually the training material does not contain the whole number of possible symbols, so
e.g. the FAZ corpus (cf. section 2.1.4) merely has xmax=215.
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A.2 synther’s Manual

synther - Manual
================

Contents
--------

1. Why synther?

2. Training
2.1. The Statistics Input File
2.2. The First Training
2.3. The Symbol Table
2.3.1. The File Identification
2.3.2. Determining the Symbol Number; xMax
2.3.3. The n-gram Order n
2.3.4. Internal and External Symbol Index
2.4. Category and Features
2.5. Print Commands
2.5.1. The Binary Statistics File
2.5.2. Print Status
2.6. Number of Training Sentences

3. Tokenizer Simulation
3.1. What Does the Tokenizer Simulation Do?
3.2. Input File and Dictionary
3.3. The First Tokenizer Simulation
3.4. The Tokenizer Output File

4. Tagging
4.1. Input and Output Files
4.2. The First Tagging
4.3. Comparison and Verification
4.3.1. Print Recognition Results
4.3.2. Consider Features
4.3.2.1. Recognition Errors Considering Features
4.3.2.2. Print Recognition Results Considering Features
4.4. Improve the Tagging Results
4.4.1. Tagging Order
4.4.2. Floor Value
4.4.3. Iterations
4.4.3.1. The First Iteration
4.4.3.2. Two Variants to Raise the Number of Iterations
4.4.3.3. Two Variants for Increasing the Iterative Method’s Effectiveness
4.4.3.3.1. Utilizing a Greater Training and Iteration Order than during the

Test
4.4.3.3.2. Iterating with the Test Set
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4.5. Some (Compatibility) Utilities
4.5.1. Block-oriented Tagging
4.5.2. Pure Output
4.5.3. Synchronization Conflicts between the Tagging Result and the Compar-

ison File
4.5.4. Number of Tagged Sentences

5. Complete Parameter List

1. Why synther?
---------------
synther is an n-gram statistics tool that is used for determining the most
probable way through a given symbol network. synther’s working method is to
be exemplified by a multilingual POS-tagger.

synther.tar.gz should be extracted into a new folder, we want to call it
~/synther/, by means of

mkdir ~/synther/
gzip -d synther.tar.gz
mv synther.tar ~/synther/
cd ~/synther/
tar xf synther.tar
rm synther.tar

The subfolder lib/ includes the source files which can be compiled on dif-
ferent UNIX derivatives like Sun OS, Linux or Cygwin for Windows using the
simple make command in the ~/synther/ path. All following actions are to be
executed in this folder; before realizing a command check your location by
typing pwd

2. Training
-----------

2.1. The Statistics Input File
synther’s input data has to be a symbol list in the form of an ASCII-file,
in the following called statistics input file. The symbol representation
should be alphanumeric (if applicable some special characters can be used
aside from ":", whose meaning is explained in 2.4.) and exclusively be sep-
arated by word-wrap ("\n") characters. Besides there are two reserved sym-
bols: SI (silence) and NIL (not in list) which have special meanings: Uti-
lizing synther for tagging, speech recognition or similar tasks the silence
symbol is used for framing each sentence, so the statistics input file
principally looks as follows:
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SI
DET:neMy }
... } 1st sentence
PUNCT }
SI
SI
PREP:a }
... } 2nd sentence
PUNCT }
SI
...
SI
PRON:n3eM }
... } last sentence
PUNCT }
SI

An exemplary file is puffer/compareFAZ.txt . The meaning of the NIL-symbol
is explained at 3.1.

2.2. The First Training
Now we can realize our first training:

synther -c -si puffer/compareFAZ.txt

-c means create n-gram statistics and the argument of the -si option is the
statistics input file name. For short explanations of synther’s arguments
v. 5. resp. type synther . Since we occasionally have to pass a long list
of arguments synther expects its input and output files in standardized lo-
cations if they are not defined explicitly. E.g. the standard statistics
input file is user/stat_in.txt . Thus we can shorten the above command by
copying our statistics input file to its standard location:

cp puffer/compareFAZ.txt user/stat_in.txt

Now it is enough typing

synther -c

2.3. The Symbol Table
During the training two output files are created: the symbol table and the
binary statistics file (cf. synther’s options -sy and -st). An exemplary
structure of the symbol table is

!Do not edit this automatically generated list!

file identification:
1013270771

xMax:
1000
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n:
2

index symbol
1 SI
2 DET
3 NOMEN
4 VERB
5 PDET
...
19 INTJ
20 FOREIGN
21 NIL

2.3.1. The File Identification
The file identification is needed to check the version equality of the
above-mentioned two files - prerequisite for synther’s flawless work. This
examination is done automatically and throws a warning in case of version
conflicts.

2.3.2. Determining the Symbol Number; xMax
xMax is an integer value that can be laid down by means of synther’s option
-x, otherwise we have xMax = 1000. This parameter always has to be an inte-
ger greater than the number of different symbols (in our above instance
this demand is met: xMax = 1000 > 21). Example:

synther -c -x 22

In case we do not know the symbol number we can determine it for the pres-
ent by assigning a large number to xMax, e.g. 1000000:

synther -c -x 1000000

Now we can have a look at the index of NIL in the last line of the symbol
table, this value is equal to the symbol number.

2.3.3. The n-gram Order n
The integer n is the maximum n-gram order and characterizes the span of the
considered transitions; it is defined by -n and has the standard and mini-
mum value n = 2. Between xMax and n the relation xMax^n < 2^64 must apply.
Examples:

synther -c -x 22 -n 14

For POS-Tagging at the most with 21 categories (incl. NIL) the maximum or-
der n = 14 can be taken.

synther -c -x 5000 -n 5

For a language model on the basis of the Verbmobil training material CD 1
to 5 (with 4936 different words) the maximum order n = 5 can be taken.
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2.3.4. Internal and External Symbol Index
The rest of the symbol table contains the correspondence between the ASCII-
symbols and their synther-internal index representation. In case of uti-
lizing synther as a module within a system (e.g. for speech recognition or
synthesis), the external symbol index representation can differ from the
above-mentioned, thus a second correspondence becomes necessary. Modeled on
the speech synthesis system Papageno its category list is taken as the ex-
ternal symbol representation standard (cf. puffer/catlist_dt). If we in-
clude it into the synther training by

synther -c -ca -cl puffer/catlist_dt

or

cp puffer/catlist_dt user/catlist.txt
synther -c -ca

we get a third column of the symbol table which contains the external indi-
ces.

2.4. Category and Features
If we compare the contents of the statistics input file
puffer/compareFAZ.txt and that of the symbol table we notice that until now
only the symbol parts on the left of the ":"-character are taken into con-
sideration. This part is called category, the right one we designate as
features. If we want to include the features in the training (= ignore the
":"-character’s exceptional effect) we must add the -f option:

synther -c -f

2.5. Print Commands

2.5.1. The Binary Statistics File
As the Binary Statistics File is not readable with the help of an ASCII-
editor, its contents can be printed after the training by the p option:

synther -c -p -n 3

Of course this information can be detoured into a file:

synther -c -p -n 3 > user/stat.txt

An exemplary structure of user/stat.txt is

line# alpha freq. symbol

1 1 3320 SI
2 2 5909 DET
3 3 10169 NOMEN
4 4 5025 VERB
5 5 735 PDET
...
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19 19 7 INTJ
20 20 5 FOREIGN
21 1001 1659
22 1002 520
23 1003 239
...
70 4003 159
...
1536 20004006 2
1537 20005003 1
1538 20009002 1

The front lines show the index assignments like in the symbol table and be-
sides the occurrence frequencies of the respective symbol. The table’s sec-
ond part begins in the line where alpha the first time is greater than
xMax. Here we can find the transition frequencies that are coded by means
of the alpha values (also designated as addresses). If we want to estimate
the frequency of the sequence VERB NOMEN for our above instance, we multi-
ply the index of VERB by xMax and add the index of NOMEN:

alpha(VERB NOMEN) = alpha(VERB)*xMax + alpha(NOMEN) = 4*1000 + 3 = 4003

In the line where alpha = 4003 we find the searched frequency:

freq(VERB NOMEN) = freq(alpha(VERB NOMEN)) = freq(4003) = 159

So generally we can seek for a sequence of n symbols by

freq(Symbol1 ... Symboln) =
freq(alpha(Symbol1)*xMax^(n-1) + alpha(Symbol2)*xMax^(n-2) + ...
+ alpha(Symboln-1)*xMax + alpha(Symboln))

If alpha(Symbol1 ... Symboln) cannot be found in the table, its frequency
is zero.

2.5.2. Print Status
If we want to be informed about the computing status of synther there are
two options:

-ps prints detailed information, e.g. how many sentences are trained
already.

-pss prints only coarse information, e.g. notifications after finishing the
training or tokenizer simulation.

2.6. Number of Training Sentences
When the sentences of the training material are separated by the SI symbol
(cf. 2.1.) the number of sentences that are to be considered is controlla-
ble by the -s parameter:
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synther -c -s 10 -ps

only includes the first ten sentences of the statistics input file.

3. Tokenizer Simulation
-----------------------

3.1. What Does the Tokenizer Simulation Do?
Like already described in 1. synther’s general task is to find the most
probable way through a symbol network. However dependent on the applica-
tions sometimes this network is not directly available but merely a word
sequence and a symbol dictionary belonging to it. The tokenizer simulation
step by step takes a word out of the sequence, seeks for its representation
in the dictionary and builds with the help of the found symbols the neces-
sary network. If it meets a punctuation mark that indicates an end of sen-
tence (".", "?", "!" or ":"), the silence symbol SI is fitted in twice
(cf. 2.1.).
During this procedure the following exceptions can emerge:

- The dictionary does not include the current word. In this case all sym-
bols contained in the symbol table except for NIL are guessed as represent-
atives.

- The symbol offered by the dictionary has not been seen in the course of
the training. Here the symbol NIL (not in list) is taken.

3.2. Input File and Dictionary
Like already mentioned in 3.1. first we need an input file containing the
word sequence. An instance is puffer/input219.txt:

demnach
müsse
der
Film
in
deutscher
...

The words are only separated by word-wrap ("\n") characters.
An example dictionary is puffer/lex219.txt:

" PUNCT
( PUNCT
) PUNCT
, PUNCT
- PUNCT
...
demnach ADV
...
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Film NOMEN:aeM NOMEN:deM NOMEN:neM
...
müsse VERB
...

The format of each dictionary line has to be

1. word
2. tabulator ("\t") character
3. sequence of symbols separated by blank (" ") characters
4. word-wrap ("\n") character

3.3. The First Tokenizer Simulation
Now we are ready to start our first tokenizer simulation:

synther -token -i puffer/input219.txt -l puffer/lex219.txt -ps

in doing so we use the parameters

-token instructing synther to execute the simulation,
-i to define the input file,
-l to specify the dictionary and
-ps to print the computing status (v. 2.5.2.).

The same effect has the command sequence

cp puffer/input219.txt user/input.txt
cp puffer/lex219.txt user/lex.txt
synther -token -ps

3.4. The Tokenizer Output File
The network constructed by the tokenizer emulation is written into the to-
kenizer output file (definable by -to; standard file: user/token.txt) that
is likewise the input file for the tagging algorithm.

4. Tagging
----------

4.1. Input and Output Files
Usually the tagging algorithm needs as input the tokenizer output file
(-to; v. 3.4.) as well as its input file (-i; mentioned in 3.2.) since both
the input word and its automatically tagged representation are written to
the output file (-o):

input auto-tagged

SI
demnach ADV
müsse VERB
der DET
Film NOMEN
in PREP
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Besides the symbol table (-sy; cf. 2.3.) and the binary statistics file
(-st; 2.5.1.) are necessary.

4.2. The First Tagging
synther is set to the tagging mode by means of the -t option. To avoid a
long argument chain first we move the utilized files (v. 4.1.) to their
standard locations and execute

synther -t

Now we can view the tagging result in the output file.

4.3. Comparison and Verification
If we want to verify synther’s tagging quality we should compare its re-
sults with a hand-tagged version of the input material. This version must
have the same format as demanded for the statistics input file in 2.1. With
the help of the verification option -v the tagging results are compared
with a comparison file defined by the -comp parameter:

synther -c -t -v -comp puffer/compare219.txt -to puffer/token219.txt
(a prepared tokenizer output file is used)

or

cp puffer/token219.txt user/token.txt
cp puffer/compare219.txt user/compare.txt
synther -c -t -v

Now the output file user/output.txt has got a third column: the hand-tagged
symbol version. If it deviates from synther’s assumption, at the end of
the line a lozenge ("#") character is inserted.

4.3.1. Print Recognition Results
synther’s recognition performance (recognition as notion for the correct
determination of the tag belonging to the current word) can be estimated by
counting the lozenge ("#") characters of the output file; e.g. by

grep -c ’#’ user/output.txt

Taking our above instance we get 174 errors. Now we look after the total
symbol number which is the first result of the command

wc user/output.txt

deducting 2 on account of the file header. We get 5569 taking our example.
So the relative error rate is 174/5569 = 0.031 = 3.1% resp. the recognition
rate 1-174/5569 = 0.969 = 96.9%
However we can control the recognition performance essentially easier by
adding the -pr (print recognition results) option:

synther -t -v -pr
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As results we get
a) the number of words with ambiguous symbols (this value is useful as most

of the tagged words permit only a single symbol thus these cases are not
significant for the assessment of synther’s capacity)

b) the total symbol number
c) the symbol error number
d) the total recognition rate
e) the recognition rate merely considering the number of words with ambigu-

ous symbols; cp. a)

4.3.2. Consider Features
As explained in 2.4. we can include the -f option to consider both catego-
ries and features while tagging:

synther -c -f
synther -t -f
This has consequences in the nature of recognition errors and results:

4.3.2.1. Recognition Errors Considering Features

synther -t -v -f

generates an output file in the following shape:

input auto-, hand-tagged
SI SI

demnach ADV ADV
müsse VERB VERB
der DET:neMy DET:neMy
...
Staatsbürger NOMEN:nmM NOMEN:amM *
als CONJ PREP # *
...
3. ADJO:deMy ADJO:deMy $
...
3. ADJO:deFx ADJO:geFy * %
...
1935 ADJC ADJJ # * %
...

While verifying synther makes use of the four marking characters: "*", "#",
"$" and "%" which present themselves in these combinations:

a) "*" means faulty features
b) "# *" marks category errors
c) "$" is a correctly recognized numeral
d) "* %" indicates a numeral’s feature error
e) "# * %" shows category mistakes of numerals

4.3.2.2. Print Recognition Results Considering Features

synther -t -v -f -pr
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The now obtained results turn out differently from 4.3.1.:

a) total symbol number
b) number of faulty categories
c) category recognition rate
d) total error number
e) total recognition rate
f) numeral number
g) number of faulty numerals
h) numeral recognition rate

4.4. Improve the Tagging Results

4.4.1. Tagging Order
The generally favorable influence of greater tagging orders on condition of
sufficient training material is commonly known and can be exploited by the
tagging algorithm. Please note that the training order must be greater than
or equal to the tagging order:

synther -c -n 3

synther -t -v -pr -n 2

results in 174 errors (utilizing the above-mentioned files)

synther -t -v -pr -n 3

causes only 149 mistakes.

4.4.2. Floor Value
Originally the floor value has been an estimated probability assigned to
every transition that had not been seen during the training, since ex-
perience shows the favorable effect of this measure. A more successful
method is the automatic reduction of the current order if the transition is
assessed at the estimated likelihood zero, if necessary until the order 1
(occurrence probability). Each step back is punished by multiplying the
found likelihood by a value less than one. Because the internal representa-
tion of the probabilities resp. frequencies is logarithmic on account of
the computing time advantage of utilizing additions instead of multiplica-
tions, the factor less than one is replaced by an addend less than zero.
This addend we still designate as floor value, and its standard value -1000
is changeable by means of the -fv option:

synther -c -f

synther -t -v -pr -f

results in 24 faulty numerals, whereas

synther -t -v -pr -f -fv -310

causes only 18 mistakes.

48



4.4.3. Iterations
Heuristic experiments have shown that the iterative method explained below
generally leads to recognition improvements: In the first place we execute
a training on the basis of hand-tagged material (cf. 2.). If this material
is not extensive enough or we want to use the created statistic in a dif-
ferent application domain, we can realize the tagging with the help of an
untagged text of the target domain, take the (undoubtedly faulty) tagging
result and make a new training, this time being based on the original
training set as well as the just automatically created one. This procedure
can be iterated; in doing so more passes do not inevitably give rise to a
recognition improvement. Therefore the mode of operation always should be
heuristically checked.

4.4.3.1. The First Iteration
For the present our experiment is to be prepared by copying the example
files to their standard places:

cp puffer/compareMTP.txt user/stat_in.txt
(the training set: 384 sentences of the MTP corpus)

cp puffer/inputFAZ219.txt user/input.txt
cp puffer/tokenFAZ219.txt user/token.txt
cp puffer/compareFAZ219.txt user/compare.txt
(the test set: 219 sentences of the FAZ corpus)

cp puffer/tokenFAZ384.txt user/iter_token.txt
(the domain-related iteration tokenizer output file: 384 sentences of the
FAZ corpus different from that above)

Now we can make a training pass without iterating

synther -c

and check the current tagging result

synther -t -v -pr

We obtain 292 mistakes. Now we can realize our first iteration (-it acti-
vates the iterative mode) utilizing the iteration token output file (-to)

synther -it -to user/iter_token.txt

synther -t -v -pr

shows a little improvement to 288 errors.

4.4.3.2. Two Variants to Raise the Number of Iterations
To determine the recognition result after the second iteration there are
two possibilities: Either we extend the statistics of the first one by it-
erating once more
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synther -it -to user/iter_token.txt -si user/iter_stat_in.txt
(The file user/iter_stat_in.txt was written during the first iteration. It
contains both the original training set and the results of the first tag-
ging; cp. 4.4.3. This file’s location could have been specified by means
of the -io option.)

synther -t -v -pr

causes 287 mistakes;

or we start a new computation and demand two passes with the help of -in:

synther -it -to user/iter_token.txt -in 2 -pss
(-pss merely serves to document the computing status.)

synther -t -v -pr

produces the same result as above.

4.4.3.3. Two Variants for Increasing the Iterative Method’s Effectiveness

4.4.3.3.1. Utilizing a Greater Training and Iteration Order than during the
Test

Repeating the instance of 4.4.1.

synther -c -n 3
synther -t -v -pr -n 2

we get 292 recognition errors. The raising of the training order does not
have an effect, since the sole demand is that the test order must be less
than the former one.
However now we check the influence of this order combination regarding the
iterative method: Ten iterations using n = 2

synther -it -to user/iter_token.txt -in 10 -n 2 -pss
synther -t -v -pr -n 2

result in 280 mistakes, whereas n = 3 while training and n = 2 for the test

synther -it -to user/iter_token.txt -in 10 -n 3 -pss
synther -t -v -pr -n 2

causes merely 247 errors.

4.4.3.3.2. Iterating with the Test Set
It is true that the logic consequence from the demand for most possible do-
main-similarity of iteration and test set is their identity, but we must
take into account the considerable additional computing expenditure in the
test phase. Each iteration costs at least one more tagging, its acceptabil-
ity as for instance in real-time-able speech processing systems depends on
the processor resources.
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cp puffer/compareMTP.txt user/stat_in.txt
(the training set: 384 sentences of the MTP corpus)

cp puffer/token219.txt user/token.txt
cp puffer/input219.txt user/input.txt
cp puffer/compare219.txt user/compare.txt
(the test set: 219 sentences of an internet corpus)

Without iterating

synther -c -n 3
synther -t -v -pr -n 3

we produce 314 mistakes. After five iterations

synther -it -in 5 -n 3 -pss
synther -t -v -pr -n 3

this number is decreased extremely (by 86 to 228 errors).

4.5. Some (Compatibility) Utilities

4.5.1. Block-oriented Tagging
Some special applications of synther (e.g. end-of-sentence-detection) do
not contain the SI symbol or they require constant distances (blocks) in
which the Viterbi Algorithm (the calculation rule to determine the most
probable path through the symbol network) starts its backtracking. This
purpose serves the -b option that forces block-oriented tagging. -bl de-
fines the block length:

synther -t -b -bl 20

4.5.2. Pure Output
If the output file is to contain nothing but the tagging results use the
pure option:

synther -t -pure

4.5.3. Synchronization Conflicts between the Tagging Result and the Compar-
ison File

Because of the automatically estimated ends of sentence by scanning for
special characters (cf. 3.1.) occasionally there are differences between
the position and number of the SI symbols of the tagging output and the
comparison file. In this case we can prevent the output of the SI symbols,
thus we must merely adapt the comparison file, for instance by

mv user/compare.txt user/compare1.txt
grep -v SI user/compare1.txt > user/compare.txt
rm user/compare1.txt

and can execute the synchronized synther variant:

synther -t -SI -v -pr

51



4.5.4. Number of Tagged Sentences
A sometimes helpful tool is the -ts parameter that defines the maximum num-
ber of tagged sentences resp. blocks (comparable to the -s option;
cf. 2.6.):

synther -t -ts 10 -ps

5. Complete Parameter List
--------------------------
-? print this help
-b block-oriented instead of sentence-oriented tagging
-bl bl block length (condition: -b); standard: bl=10
-c create n-gram statistics
-ca use category list for adaptation to another category set
-cl cl category list file for use in case of -ca; standard: cl=

user/catlist.txt
-comp comp comparison file for verification of hand-tagged material with

the synther-generated tagging output; standard: comp=
user/compare.txt

-f include features for building statistics, tagging and verifying
-fv fv floor value; it has to be a negative integer; standard: fv=-1000
-h print this help
-help print this help
-i i tagger input file; standard: i=user/input.txt
-in in number of iterations (condition: -it); standard: in=1
-io io training material file utilized by iteration; standard: io=

user/iter_stat_in.txt
-it iterates the n-gram training
-l l dictionary to be used to simulate the tokenizer; standard: l=

user/lex.txt
-n n n-gram order for building statistics and tagging; standard: n=2
-o o tagger output file; standard: o=user/output.txt
-p print the n-gram statistics results after building
-pr print recognition results
-ps print computing status
-pss print short computing status
-pure merely write the tagging results into the output file
-s s number of sentences to be used for building the n-gram statis-

tics; standard: s=all
-si si n-gram statistics input file; standard: si=user/stat_in.txt
-SI do not separate sentences of the tagging output file by the SI

symbol
-st st binary n-gram statistics file; standard: si=user/stat.bin
-sy sy symbol table file; standard: sy=user/symtab.txt
-t execute tagging
-to to tokenizer output file; standard: to=user/token.txt
-token simulate tokenizer
-ts ts number of sentences resp. blocks to be tagged; standard: ts=all
-v verification of the tagging results
-x x maximum number of different symbols; standard: x=1000

written 2002-02-17 by David Sündermann

52



Bibliography

[Ko64] E. Koelwel; H. Ludwig: Gepflegtes Deutsch. Verlag Enzyklopädie,
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