
EVALUATING ACOUSTIC, TEXTUAL AND GRAMMAR FEATURES FOR
ALCOHOL CLASSIFICATION

Felix Neutatz1,2, Dennis Schmidt1,2, Moritz Teckenbrock1,2 and
David Suendermann-Oeft1,3

1DHBW Stuttgart, Germany
2IBM Deutschland MBS GmbH, Ehningen, Germany

3ETS, San Francisco, USA∗

Abstract: This paper evaluates the detection of alcohol intoxication in speech,
using different classification approaches. It compares the classification based on
acoustic, textual and grammar features as well as the combination of these three.
Furthermore, it examines the influence of experiment and category dependency.
The paper concludes that neither classification using textual features nor classifica-
tion based on grammar features can challenge the baseline. Nevertheless, experi-
ment and category dependency have a significant influence on the result.

1 Introduction

One major issue in road traffic is alcohol intoxication. Every day more than 40 persons in
Germany could be saved from injuries or even death, if alcohol intoxicated people were stopped
from driving [1].
An idea to tell whether or not somebody is intoxicated is to record an individual’s speech and

apply machine learning techniques for classification.

In 2013 a research team worked on classifying intoxication with the help of text features only.
They presented an outstanding result of 89.4% for the unweighted average recall on picture de-
scription experiments [2]. Motivated by this outcome, our goal was to outperform this baseline
by using more sophisticated classification methods combining textual and acoustic features.
Since in a realworld scenario the textual transcription of the evaluated individuals’ speech is not
available, we also used the text produced by a speech recognizer.
However, it turned out that the former research team’s approach was not scientifically sound

due to several inconsistencies described later. Therefore, their experimental results could not
serve as valid baseline.
All experiments described in this paper are based on the Alcohol Language Corpus (ALC) pro-

vided by the Ludwig Maximilians University of Munich. The corpus includes voice recordings
of people in alcohol intoxicated and sober state [3][4].
Our partitioning of the corpus instances into training, development and test set is adopted from

the Interspeech 2011 Speaker State Challenge [5] as shown in table 1.
In the following we elaborate on the deficiency of [2], present and a scientifically sound ap-

proach to applying text classification to the scenario at hand, experimental results, and conclu-
sions.

∗The described work was done when D. Suendermann-Oeft was at DHBW Stuttgart.

Table 1 - Partitions of ALC by IS2011 and our reduced version (red)
NAL NAL (red) AL AL (red) total total (red)

Train 3750 1885 1650 1595 5400 3480
Develop 2790 1421 1170 1131 3960 2552
Test 1620 1566 1380 1334 3000 2900
Train+Develop 6540 3306 2820 2726 9360 6032
Train+Develop+Test 8160 4872 4200 4060 12360 8932

2 Issues with the previous study

There are several shortcomings in [2] rendering its outcomes unreliable. The most substantial
problem is the application of attribute selection to the whole data set (including the test set).
This results in an overoptimistic outcome.
Moreover, the comparison between the performance of different machine learning algorithms

(e.g. Logistic regression, Naı̈ve Bayes, SMO) was limited to the classifiers’ default settings
rather than applying specific parameter tuning. In one case, 10-fold cross-validation was per-
formed on the whole data set. As there is a random distribution of the samples in the different
folds, genders are not balanced, and the tests are not speaker independent.
Another major issue in [2] is the ambiguous definition of alcoholization and non-alcoholization.

In [2] the class ”alc” (alcohol) includes all recordings of persons who consumed alcohol. All
other recordings are annotated as ”nonalc” (non-alcohol). The Interspeech 2011 Speaker State
Challenge (IS 2011) requested to outperform the baseline provided by [5] where the class ”alc”
was determined by the value of the blood alcohol concentration (BAC). All intoxicated persons
having a BAC greater than 0.05% were classified as ”alc”.
For these reasons the results in [2] are not comparable to the IS 2011 [5] baseline.

3 Corpus

For the research work in this paper we used the ALC, which consists of 39 hours of speech
from 77 female and 85 male speakers [6]. However, we classified on a reduced data set that was
introduced by the IS 2011 challenge. In order to provide a gender-balanced setup, the utterances
of 8 male speakers were discarded from the original data set. The ALC consists of different
categories which are listed in table 2. Each category consists of a number of experiments.
The category ”read command” contains the experiment, where the user has to read ”Autobahn
meiden” or ”nächster Titel”, for example.
Some of the experiments that were conducted to gather the data of the ALC were applied to

intoxicated persons only. There are twice as many experiments for the non-alcoholized class as
for the alcoholized one. Moreover, one of the experiments was not conducted for intoxicated
persons. Thus, there are 32 experiments in total that are not available in both class states. This
gives text classification an unfair advantage over acoustic classification. Therefore, we removed
these instances from the original data set.
We trained models on the training set, tuned the parameters on the development set and built

final models with optimal parameters on the merge of training and development instances. In
[2] there is also research on subsets of the corpus, representing the different categories of the
conducted experiments, e.g. a model specifically built for the category of describing pictures.
Some of these subset models turned out to achieve superior performance results compared to the
general corpus model. Accordingly, as described in [2] we also assessed the impact of category
dependency.

Table 2 - Partitions of ALC by IS2011 of our reduced version (red.)
Cat. Description Speech Type # Train # Dev # Test # TOTAL

NAL AL NAL AL NAL AL NAL AL
LN List numbers read 325 275 245 195 270 230 840 700
LT List tongue twister read 65 55 49 39 54 46 168 140
LS List spelling read 65 55 49 39 54 46 168 140
RT Read tongue twister read 260 220 196 156 216 184 672 560
RR Read command read 260 220 196 156 216 184 672 560
RA Read address read 260 220 196 156 216 184 672 560
DQ Dialog question spontaneous 65 55 49 39 54 46 168 140
DP Dialog picture descr. spontaneous 65 55 49 39 54 46 168 140
MQ Monolog question spontaneous 65 55 49 39 54 46 168 140
MP Monolog picture spontaneous 130 110 98 78 108 92 336 280
EC Elicited command spontaneous 325 275 245 195 270 230 840 700

Table 3 - weka.filters.unsupervised.attribute.StringToWordVector configuration
Function value
setWordsToKeep() 1000000
setIDFTransform() false
setTFTransform() false
setLowerCaseTokens() true
setOutputWordCounts() true
setMinTermFreq() 2
setNormalizeDocLength() new SelectedTag(1,StringToWordVector.TAGS FILTER)
setNGramMinSize() 1
setNGramMaxSize() 3
setUseStoplist() true
setStopwords() new File(ḧttp://members.unine.ch/jacques.savoy/clef/germanST.txt)̈
setStemmer() new SnowballStemmer(g̈erman)̈

Accordingly, in order to get test results for every single category we reduced the training,
development and test set to samples of the corresponding category. On these subsets we used
the aforementioned approach to build, tune and test individual models.

4 Experiments

We ran all experiments with the Weka v3.7 [7], a data mining framework written in Java. It
features a good number of pre-processing and classification algorithms. Moreover, we leveraged
the Weka plugin for LibSVM [8], an open-source support vector machine toolkit.

4.1 Text Features

For text classification we created a bag-of-words model with the help of the Weka function
StringToWordVector. This function provides several parameters to modify the bag-of-words
model. We experimented with the degree of n-grams, case sensitivity, IDF/TF transformation,
deletion of stop words, word stemming, normalization by document length and minimum term
frequency. The best configuration we found is described in table 3.
As database for text classification we used manually transcribed recordings provided by the

ALC. In order to apply text classification to real-world applications, speech recognition is re-
quired. We used PocketSphinx [9] (v0.7) as speech recognizer and trained two different lan-
guage models — one for tuning and one for testing. The statistical language model, based on
trigrams, was built with the language model tools (CMUclmtk) of the CMUSphinx toolkit [10].
For tuning we took all training, for testing both training and development samples to create

Table 4 - Performance of speech recognition model on the whole corpus
Model WER
Train 42.9%
Train+Develop 38.1%

Table 5 - Baseline reproduction
Smote SVM Results

Percentage KNN c UAR dev UAR test
127 5 0.02 65.3% 65.7%

the model. Moreover, we generated two corresponding word lists, which were converted to
dictionaries by adding phoneme transcriptions. For this purpose we applied Sequitur G2P, a
state-of-the-art grapheme-to-phoneme converter [11]. Since the G2P software utilizes a statisti-
cal approach to find the corresponding phonemes, we used the lexicon of the training set of the
Verbmobil Corpus to train the G2P model [12].
We measured the performance of the speech recognizer for all available samples (15,180) of

the corpus shown in table 4. In addition to the text features which were recognized by the ASR,
we also added the certainty factor of PocketSphinx, for the classification experiments described
below.

4.2 Acoustic Features

To produce acoustic features, we leveraged the audio feature extractor openSMILE [13]. We
used the baseline acoustic feature sets from the Interspeech (IS) Speaker State Challenge 2011
[5]. The IS 2011 configuration consists of 60 low-level descriptors, providing 4,368 features in
total. All audio files were downsampled from 44.1 kHz to 16 kHz sample rate in order to fit the
openSMILE configuration.
The used parameters to produce the baseline and our results are shown in table 5. First we

oversampled by 127% using 5 nearest neighbors in combination with the Synthetic Minority
Oversampling Technique (SMOTE). The classifier is a support vector machine (SVM) using a
linear kernel.
The complexity parameter c was tuned on the development set. Details of tuning of c are shown

in figure 1.

4.3 Grammar Features

In order to recognize grammar errors in the transcribed samples, we used LanguageTool (v2.4),
a proof-reading framework in Java [14].
We applied grammar rules which identify common grammatical and syntactical mistakes in the

German language. Altogether, there were 64 features extracted for every recording.
In addition to the experimental results for text and grammar based classification, we tested the

combination of text + acoustic + grammar for further optimization.

4.4 Results

Table 6 shows results for all categories using either acoustic, text, grammar or the combination
of all three features. The complexity parameter c of the SVM is tuned on the development set.
The optimal value of c is also given in table 6.

Figure 1 - Tuning the complexity parameter of the SVM

Table 6 - Results for categories with different feature sets
Category Acoustic Text Grammar Acoustic + Text + Gram-

mar
c UAR

dev
UAR
test

c UAR
dev

UAR
test

c UAR
dev

UAR
test

c UAR
dev

UAR
test

LN 0.020 63% 66% 0.020 52% 50% 0.040 50% 50% 0.030 63% 66%
LT 0.010 58% 68% 0.060 53% 57% 0.005 50% 50% 0.010 59% 66%
LS 0.010 60% 69% 0.030 53% 50% 0.005 50% 50% 0.010 58% 70%
RT 0.010 64% 70% 0.010 49% 44% 0.005 50% 50% 0.030 65% 71%
RR 0.060 65% 64% 0.005 50% 50% 0.005 50% 50% 0.060 65% 65%
RA 0.010 64% 65% 0.010 48% 47% 0.005 50% 50% 0.020 63% 64%
DQ 0.030 70% 72% 0.010 61% 71% 0.100 55% 50% 0.005 72% 79%
DP 0.080 61% 63% 0.080 69% 61% 0.040 58% 50% 0.005 66% 69%
MQ 0.005 62% 58% 0.030 52% 57% 0.040 54% 50% 0.005 54% 69%
MP 0.030 63% 67% 0.010 68% 66% 0.010 50% 50% 0.030 69% 70%
EC 0.020 66% 66% 0.060 59% 57% 0.020 50% 50% 0.020 65% 65%

.
Results in green cells outperform the UAR of the IS2011 winner [15] (UAR 70.54%)

Results in yellow cells outperform the baseline [5] (UAR 65.9%)

Comparing the acoustic, text and grammar feature sets shows that acoustic feature classifiers
outperform the other feature sets for all categories. It is striking that the grammar based classi-
fiers perform very poorly. One reason for the little information gain provided by the grammar
features could be that there are few grammar error types recognized by the framework we use.
Moreover, it is obvious that the text classification does not work for categories where partici-
pants have to read a given text and are not required to utter spontaneous speech. This is outlined
by the poor performance for the reading categories LN, LT, LS, RT, RR and RA. However, text
feature based classifiers show better results on spontaneous speech categories i.e. DQ, DP. Un-
expectedly, the combination of all features does not improve the results in all cases compared
to acoustic features only. One reason for the low performance of the combined feature set could
be the simple merging of the features without weighting their impact.
Besides, we compared the performance of transcribed text and by ASR recognized text as

shown in figure 2. For five categories ASR generated text features perform better than the text
features transcribed by hand. One reason for this finding could be that in addition to the actual
text recognized by the ASR, the classifier uses the certainty factor of the ASR.

Figure 2 - Transcribed Text vs. ASR classification

5 Conclusion

Our results show that text classification cannot improve previous baseline results from [5],
which are based on acoustic features. The main reason is that at least half of the experiments
are reading tasks. This means there is hardly any information gain provided by text features.
However, single experiments show that text features can result in additional information gain

for experiments of spontaneous speech, e.g. describing pictures (DP) and dialog questions (DQ).
Also, we found that using text features produced by ASR does not compromise classification
results compared to manual transcriptions.
Moreover, the results point out that the grammar features we applied are not suitable for clas-

sifying alcohol intoxication using the given corpus and its experiments. To outperform current
baselines the next step could be to use deep learning methods as proposed in [17].

References

[1] Statistisches Bundesamt: Zahl der Verkehrstoten im April 2014 stark gestiegen. Press re-
lease. Wiesbaden, Germany. June 2014.

[2] A. Jauch, P. Jaehne, and D. Suendermann: Using Text Classification to Detect Alcohol
Intoxication in Speech. In Proc. of the 7th Workshop on Emotion and Computing at the
36th German Conference on Artificial Intelligence, Koblenz, Germany, 2013.

[3] F. Schiel and C. Heinrich: Laying the Foundation for In-Car Alcohol Detection by Speech.
In Proc. of the Interspeech, Brighton, UK, 2009.

[4] F. Schiel, C. Heinrich, S. Barfuesser, and T. Gilg: ALC - Alcohol Language Corpus. In
Proc. of the LREC, Marrakesh, Morocco, 2008.

[5] B. Schuller, S. Steidl, A. Batliner, F. Schiel, and J. Krajewski: The INTERSPEECH 2011
Speaker State Challenge. Florence, Italy, 2011.

[6] F. Schiel, C. Heinrich, and S. Barfuesser: Alcohol Language Corpus. The first public corpus
of alcoholized German speech. Munich, Germany, 2011.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten: The WEKA
Data Mining Software: An Update. Orlando, USA. 2009.

[8] C. Chang and C. Lin: LIBSVM: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology (TIST) 2.3 (2011): 27.

[9] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar, and A. I. Rudnicky:
Pocketsphinx: A Free, Real-Time Continuous Speech Recognition System for Hand- Held
Devices. In Proc. of the ICASSP, Toulouse, France, 2006.

[10] http://cmusphinx.sourceforge.net/

[11] M. Bisani and H. Ney: Joint-Sequence Models for Grapheme-to-Phoneme Conversion.
Speech Communication, Volume 50, Issue 5, Pages 434-451. Amsterdam, The Netherlands,
2008.

[12] Verbmobil Corpus, BAS, Munich, Germany, 1995.

[13] F. Eyben, F. Weninger, F. Gross, and B. Schuller: Recent Developments in
openSMILE, the Munich Open-Source Multimedia Feature Extractor. In Proc. ACM Mul-
timedia (MM), Barcelona, Spain, 2013.

[14] M. Miłkowski: Developing an open-source, rule-based proofreading tool. Software-
Practice & Experience, Volume 40, Issue 7, New York, USA, 2010.

[15] D. Bone, M. P. Black, M. Li, A. Metallinou, S. Lee, S. S. Narayanan: Intoxicated Speech
Detection by Fusion of Speaker Normalized Hierarchical Features and GMM Supervectors.
In Proc. of the Interspeech, Florence, Italy, 2011.

[16] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer: “Synthetic minority
over-sampling technique“. Journal of Artificial Intelligence Research, vol. 16, pp. 321-357,
2002.

[17] H. Lee, Y. Largman, P. Pham, and A. Y. Ng: Unsupervised feature learning for audio
classification using convolutional deep belief networks. In Advances in neural information
processing systems (pp. 1096-1104). 2009.

