
Who Discovered the Electron Neutrino?
A Telephony-Based Distributed Open-Source

Standard-Compliant Spoken Dialog System for
Question Answering

Tarek Mehrez1,2,5, Abdelrahman Abdelkawy 1,5, Youmna Heikal1,5,
Patrick Lange1,3,4, Hadeer Nabil1,5, David Suendermann-Oeft1

1DHBW, Stuttgart, Germany
david@suendermann.com

2University of Stuttgart, Germany
3Linguwerk, Dresden, Germany
patrick.lange@linguwerk.de

4Staffordshire University, Stafford, UK
5German University in Cairo, Egypt

{tarek.mehrez,abdelrahman.mostafa,youmna.heikal,hadeer.nabil}@student.guc.edu.eg

ABSTRACT

The development of spoken dialog systems (SDSs) has
traditionally assumed two orthogonal directions dependent on
whether academia or industry was concerned. The former
has been led by the conviction that systems should be as
human-like and data-driven as possible and available for free.
Accordingly, academic dialog management methodologies are
dominated by MDP, POMDP, agenda-based, or incremental
techniques. In contrast, industry has focused on practical sys-
tems, interchangeability of components, ease of development,
and profitability. Consequently, over the past decade, multiple
standard protocols describing architecture and interoperability
of SDS components were agreed upon. While these standards
are freely distributed by the W3C, software components in the
speech industry are mainly proprietary.

In this paper, we present an SDS architecture that is
to bridge the gap between these two worlds. By taking
open-source components from heterogeneous sources (Sphinx,
FreeTTS, Cairo, Zanzibar, JVoiceXML, Apache, Ruby on
Rails, Asterisk, and OpenEphyra), we established an SDS
that is callable from SIP clients as well as PSTN phone
lines. All these components were designed or adapted to
adhere to the aforementioned industry standards including
VoiceXML, JSGF, SIP, and MRCP. The resulting system can
be pointed at a start URL hosting a VoiceXML page featuring
the SDS’s logic and can be called immediately without further
setup. Thereby, the design of SDSs and their execution get
decoupled. By distributing components across multiple servers
(telephony, voice browser, MRCP, and web server) and hosting
them in a virtual environment allowing for rapid cloning, the
infrastructure is easily scalable. To encourage the community

to engage in the presented endeavor, we are opening our
infrastructure and hardware to beta testers. To demonstrate the
described framework, we built a question answering service
similar to IBM’s Watson but with speech recognition input. In
doing so, we used source code provided by one of Watson’s
creators.

I. INTRODUCTION

The past two decades have witnessed a remarkable escala-
tion in the field of speech and language technology. This devel-
opment was primarily due to advances in computational power,
amount of available corpora to train data-driven techniques,
and the use of more sophisticated models. Deploying speech
recognizers, speech synthesizers, and language understanding
technology in real-world spoken dialog applications became
feasible and common practice since the beginning of the
millenium. SDSs became a common solution for various
services that include banking, stock transactions, information
enquiries, and other customer services. Over the last five
years, a considerable movement from the aforementioned
transactional systems towards open-domain voice assistants
could be observed. Modern systems such as Apple’s Siri
and IBM’s Watson DeepQA are able to process virtually any
natural language query and provide correct answers or engage,
especially in case of Siri, in a dialog with the user.

The vast majority of past activities in the development of
commercial SDSs resulted in proprietary software solutions.
As opposed to potential open-source alternatives, such soft-
ware comes along with substantial disadvantages:

• it imposes considerable licensing fees;

1



Fig. 1. A basic SDS architecture

• the consumer relies entirely on the vendor when it comes
to feature enhancements, troubleshooting, service quality,
etc.;

• the compliance to industry standards (for grammars,
dialog logic, transport etc.) is not guaranteed as there is
no common code base.

Due to the above reasons and because of repeated requests
by the community, the authors decided to develop an SDS
infrastructure based on open-source components only. As
opposed to existing open-source solutions such as CMU’s
Olympus initiative, the new framework is to adhere to industry
standards such as VoiceXML, JSGF, MRCP, SIP, etc. to make
it a true alternative to commercial systems.

We chose to use a distributed architecture for our SDS
giving us the privilege of a reusable system which is flexible
to new updates, newly integrated tools or enhancements to
the existing ones. The communication between the underlying
components is achieved through multiple standard protocols:
session initiation protocol (SIP) [11] for call handling, real-
time transport protocol (RTP) [15] for audio streaming, and
media resource control protocol (MRCP) [16] handling the
exchange between voice browser and speech recognition and
synthesis components. A basic architecture that examines the
typical components of an SDS is shown in Figure 1.

Inspired by the fictional character Hadschi Halef Omar, the
overly communicative adventurer invented by Karl May, one
of the most popular German authors, we branded our system
HALEF (Help Assistant—Language-Enabled and Free). Halef
is designed to adhere to the aforementioned industrial stan-
dards and limits the developer’s concerns to the VoiceXML
logic, rather than building up the SDS architecture from
scratch. This is reached by having distributed components that
point to the VoiceXML application’s URL. As example system
to demonstrate Halef’s capabilities, we integrated a question
answering (QA) system for general purpose questions in the
English language, similar to IBM Watson DeepQA.

Fig. 2. Components of Halef

II. COMPONENTS

As depicted in Figure 1, a typical SDS consists of mod-
ules for speech recognition, language understanding, dialog
management, language generation and speech synthesis. For
those modules, Halef employs Sphinx, Open Ephyra, Ruby On
Rails, Open Ephyra, and FreeTTS, respectively. Features im-
plemented in VoiceXML depend on the developer’s intention
as previously mentioned. In our case, language understanding
and generation are implemented within the question answering
system Open Ephyra.

Briefly, Halef handles those components in a slightly dif-
ferent way than the usual sequential architecture shown in
Figure 1. Several components are grouped together forming
independent chunks which are, according to our distributed
architecture, hosted on different virtual machines:

• the speech server that groups Sphinx and FreeTTS,
• the voice browser JVoiceXML, and
• the web server which hosts the VoiceXML code being

fetched by the voice browser.

OpenEphyra is served on yet another server, and it is being
called by the VoiceXML code on the web server. Exchange of
audio streams is handled via various protocols as mentioned
in the previous section.

Since Halef is a telephony-based system, a telephony server
was required to pass users’ calls into our architecture. System
components are served on several virtual Linux machines.
This ensures the system’s flexibility in recombining different
components, as we discuss later, and offers developers the
ability to build a tailored architecture meeting their require-
ments. The distributed architecture of Halef, with reference to
the several virtual machines holding separate components, is
demonstrated in Figure 2 as first introduced in [17]. Each com-
ponent is described individually in the upcoming subsections.

2



A. The telephony server

Following previous efforts in building Interactive Voice
Response (IVR) systems [9], [10], [3], a central server was
required to operate as the gateway between assorted resources
and Halef’s components.

We use the popular Asterisk PBX [7] which provides
the essential features needed for building a central server
for calling into our system. Those features were satisfied
by Asterisk’s capabilities that included supporting different
protocols, several telephony sources such as PSTN landlines
and SIP soft phones.

Multiple architectures and levels within the network were
not a barrier, since Asterisk is capable of calling through
different kinds of networks with various levels of complexity
in the adhered proxy settings, which was an advantage for
enabling calls from any possible source.

Asterisk passes the call through the SIP protocol to the
voice browser, to initiate the sessions and resources in all
components. Similarly, the audio streams are delivered to
the speech server via RTP; they include streams for speech
recognition and synthesis.

Furthermore, Asterisk’s powerful dial plans provided a
flexible solution to routing calls to a multitude of Halef
instances. They were also used to overcome issues of the
dialog manager such as proper termination of sessions or
handling of concurrency.

B. Voice Browser

The voice browser consists of two main components, Zanz-
ibar [9] and JVoiceXML [14]. The former is responsible for the
communication between telephony server, voice browser and
speech server using the SIP protocol. It determines required
resources for the VoiceXML application and initiates a SIP
session by notifying the speech server. This ensures that the
user’s call is forwarded to the speech server to perform speech
recognition and to the voice browser which interprets the
VoiceXML code.

Halef’s voice browser is JVoiceXML, an open-source soft-
ware that supports many commonly used industrial standards.
JVoiceXML uses Zanzibar as MRCP gateway, the protocol to
communicate with the speech server. In this way, Zanzibar is
responsible for session initiation, resource management and
issuing recognition and synthesis requests as we show later.

C. Web Server

VoiceXML applications are equipped with numerous fea-
tures for handling call flows and dialog states. Dialog manage-
ment, language understanding, syntactic and semantic parsing
are possible by integrating standalone scripts and applications
into VoiceXML.

In Halef, the actual VoiceXML application is served on a
separate web server. Upon receiving the recognition result,
the dialog manager—a Ruby On Rails application in our
case—engages the QA web application which is served on
yet another server. The QA web application is based on Open
Ephyra [12], an open-source system which was developed by

one of the researchers working on IBM’s Watson DeepQA ini-
tiative [2]. It represents a combination of several components
that form a sequence for question analysis, query generation,
pattern matching, answer extraction and answer selection as
displayed in Figure 3.

Fig. 3. Steps of performing QA analysis

First of all, the question is normalized to be accessible
for query generation. This includes removing punctuations,
expanding abbreviations and further stemming for nouns and
verbs. Then keywords, question type, and named entities are
extracted to generate the proper query for this question.

Queries are generated and expanded using the extracted
data, along with synonyms extracted from WordNET [8].
Furthermore, queries are updated to include expected patterns
and forms for the answer. The generated query is then used
to search the available knowledge base.

Fetching the answer depends on the question’s type. If
the analysis phase managed to come up with a possible
type for the question, a pattern matching method is used to
map the extracted type to its corresponding pattern which
is then used to extract the answers’ candidates. However,
if the analysis components failed to extract the question’s
type, another approach is followed in order to generate the
answer’s pattern using the property, target, and the context of
the question. For instance, the question ”Who invented Halef?”
asks for the property (name) of a target (inventor) in the
context (Halef). The generated pattern is then matched against
the knowledge base searching for possible answers sharing the
same pattern and, thus, the same property, target, and context.
After matching the derived patterns, a list of candidates for the
possible answer is returned, and the answer with the highest
confidence score is chosen.

D. Speech Server

As speech server, we deploy Cairo [9] which supports
MRCP. This server gives the voice browser the ability to
establish a connection via SIP with the speech resources and
also enable audio streaming via RTP between the MRCP
server and Asterisk. The audio streams are then forwarded
to Sphinx [20], the speech recognizer which is managed by
Cairo. The recognized utterance is passed to the voice browser
via MRCP and consumed by the VoiceXML application and,
hence, the QA system.

On the other hand, when the previous sequence is reversed
answers from the QA system are passed via MRCP to the
speech server. It uses FreeTTS [19], an open-source tool

3



for speech synthesis, to speak back the answer by returning
the audio stream to Asterisk again via RTP. Both speech
resources, Sphinx and FreeTTS, are open-source tools, written
in Java, which were integrated within the MRCP implemen-
tation. Sphinx supports multiple industrial standards used by
VoiceXML like JSGF grammars [4]. Therefore, it stood out
as the best fit for our architecture.

E. Bringing it all together

Figure 4 shows an example of Halef’s execution flow. Since
multiple processes are executed in parallel, we did not use a
conventional sequential flow diagram.

Fig. 4. Flow diagram for Halef

It starts with the user’s call received by Asterisk. A notifica-
tion is sent to the voice browser to fetch the VoiceXML code
from the web server and to identify what resources are needed
for this application to be prepared by the speech server. The
MRCP server is then notified. It starts sessions and channels
for all required resources including the provisioning of speech
recognition grammars. Then, a SIP response is sent back to
the voice browser and Asterisk. Now, the session initiation has
been confirmed, and the communication channel between the
user and Halef’s components is successfully established.

Via RTP, audio is streamed from Asterisk to the speech
server. When the caller starts speaking Sphinx’s voice activity
detector fires, and the respective audio is being decoded by the
speech recognizer. When the voice activity detector finds that
the caller has finished speaking, Sphinx sends the recognition
result back to the voice browser which passes it on to the QA
web application and awaits for an answer.

The answer is then sent back to the dialog manager which
generates VoiceXML code with the answer to be spoken out
by FreeTTS. When the voice browser receives the answer it
proceeds interpreting the VoiceXML code and sends a syn-
thesis request to the speech server with the answer. FreeTTS
performs the synthesis, passes the result back via RTP to
Asterisk which forwards the audio signal to the user. At the

same time, Cairo sends a confirmation to the voice browser.
After receiving this notification, the voice browser orders a
cleanup request to close all open channels and resources. It
ends the SIP session with Asterisk, and, finally, Asterisk sends
an end-of-call signal to the user.

III. DIALOG EXAMPLES

The following section demonstrates two dialog examples
handled by Halef’s QA application:

Dialog 1:
Halef: Welcome to the Spoken Dialog Systems Research Cen-
ter. Which extension would you like to be connected to?
<User enters extension>
Halef: What is your question?
User: Who was the 40th president of the United States of
America?
Halef: The answer is Ronald Reagan. Goodbye!

Dialog 2:
Halef: <Introduction>
<User enters extension>
Halef: What is your question?
User: When did World War II end?
Halef: The answer is April 29, 1945. Goodbye!

IV. FUTURE WORK

In order to improve Halef’s speech processing capabilities,
we are going to invest a significant effort to enhance the
speech server’s components by tuning Sphinx and FreeTTS,
for instance by using techniques for voice adaptation [5], [18].
This also includes the support of ARPA statistical language
models [1] for recognizing unconstrained speech by the user,
instead of limiting the possible spoken input to what is
covered by rule-based JSGF grammars. Also other syntactic
and semantic grammar standards such as SRGS and SISR are
to be implemented.

An important prerequisite in order to make Halef ready for
commercial deployment is that the central telephony server is
able to handle concurrent calls. This can be achieved by pass-
ing them to several Halef instances making use of the power
behind Asterisk’s dial plans. We also plan to demonstrate
Halef’s capabilities by means of other VoiceXML applications
beyond the QA system described in the present paper. Such
applications could include intelligent tutoring systems [6],
assessment of English Language Learning [21], or automated
troubleshooters [13].

V. CONCLUSION

In this paper, we gave a brief description of Halef, an open-
source VoiceXML-based spoken dialog system. We built a
composite infrastructure that is based on a combination of
various open-source tools.

In order to investigate Halef’s abilities, we integrated Open
Ephyra, a question answering system that operates as a stan-
dalone web application.

4



Halef demonstrates how open-source speech and language
technology can be deployed serving the same standards and
functionality as commercial products. We maintain Halef as
free software accessible via Sourceforge at

http://sourceforge.net/projects/halef/

and strongly encourage the community to engage in its con-
tinued enhancement. Our team also offers deployed Halef
instances running on DHBW’s infrastructure to beta testers
who can test their VoiceXML applications hosted on their
own servers. For this purpose, they will be provided a SIP
connection or U.S. phone number pointing at their Halef
instance free of charge.

REFERENCES

[1] P Clarkson and R Rosenfeld. Statistical language modeling using the
CMU-Cambridge toolkit. In Proc. of Eurospeech, 1997.

[2] D Ferrucci, E Brown, J Chu-Carroll, J Fan, D Gondek, A Kalyanpur,
A Lally, J Murdock, E Nyberg, and J Prager. Building Watson: an
overview of the DeepQA project. AI magazine, 31(3), 2010.

[3] J Glass. Challenges for spoken dialogue systems. In Proceedings of the
1999 IEEE ASRU Workshop, 1999.

[4] A Hunt. JSpeech Grammar Format, W3C Note, June 2000. See
http://www.w3.org/TR/2000/NOTE-jsgf-20000605.

[5] A Kain and M Macon. Personalizing a speech synthesizer by voice
adaptation. In The Third ESCA/COCOSDA Workshop (ETRW) on Speech
Synthesis, 1998.

[6] DJ Litman and S Silliman. ITSPOKE: An intelligent tutoring spoken
dialogue system. HLT-NAACL, 2004.

[7] L Madsen, J Smith, and J Van. Asterisk: the future of telephony. USA:
O’Reilly, 2005.

[8] G Miller. WordNet: a lexical database for English. Communications of
the ACM, 38(11), 1995.

[9] D Prylipko, D Schnelle-Walka, S Lord, and A Wendemuth. Zanzibar
OpenIVR: an open-source framework for development of spoken dialog
systems. In Proc. of TSD, 2011.

[10] A Raux, B Langner, D Bohus, A Black, and M Eskenazi. Let’s go
public! taking a spoken dialog system to the real world. In in Proc. of
Interspeech, 2005.

[11] J Rosenberg, Schulzrinne, G Camarillo, A Johnston, J Peterson,
R Sparks, M Handley, and E Schooler. SIP: session initiation protocol.
Technical report, RFC 3261, Internet Engineering Task Force, 2002.

[12] N Schlaefer, E Nyberg, J Callan, J Carbonell, and J Chu-Carroll. Sta-
tistical source expansion for question answering. PhD thesis, Language
Technologies Institute, School of Computer Science, Carnegie Mellon
University, 2011.

[13] A Schmitt, M Scholz, W Minker, J Liscombe, and D Sündermann. Is
it possible to predict task completion in automated troubleshooters? In
Proc. of the Interspeech, 2011.

[14] D Schnelle-Walka. Architecture of JVoiceXML version 0.0. Technical
report, Technische Universität Darmstadt, 2006.

[15] H Schulzrinne, S Casner, R Frederick, and V Jacobson. Real-time
transport protocol. Technical report, RFC 1899, Internet Engineering
Task Force, 1996.

[16] S Shanmugham and P Monaco. A media resource control protocol
(MRCP). Technical report, RFC 4463, Internet Engineering Task Force,
2006.

[17] D Suendermann-Oeft. Modern conversational agents. In Technologien
fuer digitale Innovationen: Interdisziplinaere Beitraege zur Informa-
tionsverarbeitung, Springer VS, 2013.

[18] D Sündermann, A Bonafonte, H Ney, and H Höge. Time domain vocal
tract length normalization. In Proc. of the ISSPIT, 2004.

[19] W Walker, P Kwok, and P Lamere. FreeTTS open source speech
synthesis. Technical report, Sun Microsystems, Inc., 2002.

[20] W Walker, P Lamere, P Kwok, B Raj, R Singh, E Gouvea, P Wolf,
and J Woelfel. Sphinx-4: a flexible open source framework for speech
recognition. Technical report, Sun Microsystems, Inc., 2004.

[21] SM Witt and SJ Young. Phone-level pronunciation scoring and assess-
ment for interactive language learning. Speech communication, 2000.

5


