
OPTIMIZE THE OBVIOUS: AUTOMATIC CALL FLOW GENERATION

D. Suendermann, J. Liscombe, R. Pieraccini

SpeechCycle Labs, New York, USA
{david, jackson, roberto}@speechcycle.com

ABSTRACT

In commercial spoken dialog systems, call flows are built by

call flow designers implementing a predefined business logic.

While it may appear obvious from this logic how the call flow

has to look like, i.e., which pieces of information have to be

gathered from the caller or back-end systems and in which

sequence, there are, in fact, strong arguments for automating

call flow generation:

• manual generation is time-consuming

• manual generation is suboptimal and error-prone

• automatic generation can react on dynamically chang-

ing business logic or external factors such as the distri-

bution of callers and call reasons

This paper presents a method for automatically deriving a call

flow minimizing the average number of user turns given a

business logic and a frequency distribution of call reasons.

As an example, we applied the method to a call routing ap-

plication whose manually built call flow is processing about

4 million calls per month and whose call reason distribution

served to measure the impact of the automatic call flow gen-

eration.

Index Terms— automatic call flow generation, spoken di-

alog systems

1. INTRODUCTION

Commercial spoken dialog systems almost exclusively rely

on the call flow paradigm, one of many possible dialog man-

agement strategies [1]. A call flow is a graph where the nodes

represent dialog states and the arcs represent transitions con-

ditioned on caller or back-end system input (see e.g. Fig-

ure 1). Generally, call flows are built by call flow designers

(aka voice user interface designers or interaction designers)

implementing a given business logic. This business logic can

be provided in form of tables such as Table 1 which was basis

of the aforementioned example call flow.

Call flows can be extremely complex with thousands of

nodes and transitions, e.g. when representing a problem-

solving spoken dialog application application [2]. These

Patent pending.

Fig. 1. Example of a call flow.

complex applications, however, can be broken down into

sub-dialogs with their respective sub-call flows each of them

serving specific purposes such as problem capture, equipment

type collection, resolution steps, etc. For instance, the above

given example can be part of a large phone banking applica-

tion able to serve many purposes such as fund management,

review of credit card statements, transfer to external accounts,

etc.

Without loss of generality, in this paper, we consider a

(sub-)call flow to be of a question-answer-destination type.

That is, the business logic tables consist of a number of

columns representing questions whose possible answers are

listed in the column fields. The mandatory destination column

determines the routing destination or final action performed

by the call flow. A general business logic table looks as

shown in Table 2. Here, Pn are the relative frequencies, or

estimated probabilities, of how often the nth table row will

service type? account type? amount? destination

balance checking give checking balance

balance savings give savings balance

transfer checking x$ check.-sav. transfer x$

transfer savings x$ sav.-check. transfer x$

Table 1. Example of a business logic table.



A1 A2 . . . AM D P

A1
1 A1

2 . . . A1
M D1 P 1

A2
1 A2

2 . . . A2
M D2 P 2

..
... ..

... ..
... ..

... ..
...

AN
1 AN

2 . . . AN
M DN PN

Table 2. General business logic table.

be visited. These probabilities are essential for some of the

following sections’ considerations. If they are not known as

for instance during the projection phase of a call flow, they

may very well be estimated or even set to unity to get started.

It is also important to note that answers to questions can be

retrieved by a variety of means including

• prompting the caller using a directed dialog listing all

possible answers

• prompting the caller with an open prompt

• accessing back-end information

• caller-initiated system input

So, why would we try to come up with an automatism to

derive a call flow from this table rather than asking Q1 (the

question whose answer is A1) followed by Q2 followed by

Q3, etc.? Mainly, because

Questions have different levels of relevance.

This includes the observation that questions may be com-

pletely irrelevant as manifested in the business logic table

(like for instance the question about the transfer amount when

calling for the account balance) or due to preexisting informa-

tion gathered by back-end systems or caller-initiated input.

Moreover, asking questions in order of decreasing relevance

leads to shorter conversations. E.g., in Table 3, when we ask

Q1 first and get b as response, Q2 can be skipped and the call

can be directly routed to D3. Similarly, if we would ask Q2

first and get c as response, we would not have to ask Q1 any-

more but could directly route to D1. So, which strategy is

better? Imagine, most of the calls end up at destination D1,

then it is most reasonable to ask Q2 first as the answer would

most likely be c. So, we have to look at the probabilities Pn to

come up with that strategy optimizing the relevance of ques-

tions and, hence, minimizing the average number of questions

asked. Besides, to ask more relevant questions first and to

rate relevance dynamically based on perceived probabilities

is a very human approach: When we enter a coffee shop dur-

ing winter it is unlikely that we get welcomed with the words

“Would you like a lot of ice in your soda?”

The question of how to best order information-gathering

questions in spoken dialog systems has been addressed be-

fore. Some researchers (e.g. [3], [4]) have proposed user

A1 A2 D P

a c D1 P 1

a d D2 P 2

b d D3 P 3

Table 3. Example of a business logic table.

models whereby the importance of information is determined

by storing known preferences of a user and using this to order

presentation elements for future interactions with that user.

However, this approach is not relevant for an application, such

as the once discussed here, where the number of repeat callers

is relatively low and the ability to collect preference informa-

tion is not feasible. Another proposed approach is to learn

question ordering from human-human dialogs. For example,

[5] used a human-human corpus to train a decision tree that

optimizes the order of questions such that information gain

is maximized. In so doing, the dialog flow was also max-

imally shortened and it was furthermore reported that call

satisfaction increased as well. In subsequent sections, we

describe a similar method for optimizing question presenta-

tion order, but instead of relying on human-human interaction

for learning—something that is not always possible or cost-

effective to obtain—we optimize on the ultimate route points

of millions of callers using spoken dialog systems in produc-

tion.

2. THE ALGORITHM

2.1. On relevance and information gain

As motivated above, we want to come up with a strategy to

ask the questions in a call flow in decreasing order of rele-

vance before routing to the destination or launching the final

action Dn. Since a call flow as introduced above is similar

to what in machine learning is referred to as decision tree, we

can use well-established machine learning techniques to come

up with an optimal call flow. When we agree that the most

relevant question is that one whose answer provides us the

maximum information, we can borrow the information gain

measure as defined in [6] to get started:

I(Y ; X) = H(X) + H(Y ) − H(X, Y ) . (1)

Here, X is a given attribute, i.e. the answer to a question, and

Y is a class attribute, i.e. the sought-for destination. So, we

may as well write

I(D; Am) = H(Am) + H(D) − H(Am, D) . (2)

H is Shannon’s entropy [7] defined as, e.g.

H(D) = −

∆∑

δ=1

P (δ) log2 P (δ) (3)



with δ ∈ {1, . . . , ∆} being the distinct destinations in the

currently processed business logic table. So, at every node in

the call flow, we simply determine which question leads to the

maximum performance gain:

Qm̂ with m̂ = arg max
m=1,...,M

I(D; Am) . (4)

If none of the questions leads to a performance gain, there is

nothing left to do, and we can route to the final destination. As

an example, consider that D1 = D2 = D3 in Table 3. As we

have a single destination, we get H(D) = −1 · log2(1) = 0.

Furthermore, we know that P (αm, δ) = P (αm) (αm be-

ing the distinct answers of Am) since the entire probability

mass is associated with the single destination δ. This leads to

H(Am, δ) = H(Am) and, hence, to I(D; Am) = 0. So, we

are good to route in this scenario.

2.2. Step by step

The algorithm f(T ) providing a call flow from a given busi-

ness logic table T works iteratively as follows:

• Compute the information gain values I(D; Am) ac-

cording to Equation 2.

• If I(D; Am) = 0 for m ∈ {1, . . . , M}, route to D. If

D is not unique, the original business logic table was

inconsistent (contradicting rows) and needs to be fixed.

Exit f(T ).

• Determine the optimum question Qm̂ according to

Equation 4.

• Iterate over all possible answers αm̂

– setting T ′ := T ,

– eliminating all rows but those associated with αm̂

in T ′,

– eliminating the m̂’s question column in T ′,

– calling f(T ′).

2.3. Special properties

Section 2.2 shows a raw version of the call flow deduction

algorithm that, in practical applications, can be enriched by a

number of special features and constraints, some of which are

to be listed here:

• The use of open prompts, user-initiated input, back-

end integration, or other input modalities may provide

information prior or during the conversation. There-

fore, call flows should generally be computed during

runtime. If possible, f(T ′) for the next machine-user

interaction should be called right before the interaction

is carried out taking all available information into ac-

count. This way, also re-gathering of information is

avoided as in the following typical example:

A: “You can get your balance or make a transfer.

Which one would you like?”

C: “The balance of my checking account, please.”

A: “Would you like to hear the checking or savings

account balance?”

• There can be special fields or special columns in the

business logic table such as

– Wildcard fields (matching everything) and nega-

tion fields (matching everything but its content).

These are to keep the business logic table as short

as possible.

– Value fields. Conventional fields represent a sin-

gle possible answer (such as the balance field in

Table 1). In contrast, value fields can represent a

variety of inputs (such as a numerical value, a set

of responses, or even a whole sub-call flow). The

integration of their respective information gain

contribution is a little more elaborate and beyond

the scope of this paper.

– Priority columns/column types. Although some-

times a certain question may produce the highest

information gain, it may be unnatural to ask be-

fore another question has been answered. E.g., a

music instruments hotline will probably not talk

like this:

A: “Welcome to Mewtheex. Are you calling

about a red, blue, or black instrument?”

C: “Uuh. I don’t care.”

A: “Do you need repair or do you want to buy

one?”

C: “Buying, I guess.”

A: “Do you want to pay by credit card or

check?”

C: “Uuh?!”

A: “And... which instrument is it about: ukulele,

piccolo, or triangle. You can also say: Give

me a different instrument.”

C: “What the hell?! I need an Eliminator De-

mon Drive Double Bass Drum Pedal!”

The resolution for this scenario is to introduce

columns of different priorities or types whose de-

pendence is taken into consideration when com-

puting the optimal information gain.

• There can be additional constraints necessary to have

the algorithm produce call flows following certain busi-

ness requirements or voice user interface best practices

such as limiting the number of possible choices at a

given directed dialog to a certain maximum [8].



number of calls 3, 868, 014
number of questions M = 4
number of rows N = 31
number of distinct destinations ∆ = 20

average number of call flow questions M̂ = 2.87

Table 4. Experiment parameters.

3. AN EXAMPLE

In order to test the proposed algorithm in a real-world sce-

nario, we took the business logic table from a mature call

router application of a large cable company processing about

4 million calls per month (see [9] for details). Based on call

logs collected over a one-month time frame (August 2009),

the probabilities Pn were estimated, and a static call flow was

generated based on the algorithm described in Section 2.2.

Table 4 reports on the experiment’s parameters.

Since Pn was known, we were able to estimate the prob-

ability with which each transition of the generated call flow

was taken and, hence, were able to estimate the average num-

ber of questions asked to route a caller to one of the 20 final

destinations. We obtained an average number of M̂ = 2.87
questions for the given business logic. The original business

logic was based on four questions:

• service type (orders, billing, technical support, etc.)

• product (internet, cable TV, telephone)

• actions (cancel, schedule, make a payment, etc.)

• modifiers (credit card, pay-per-view, digital TV conver-

sion, etc.)

Hence, the implementation of said business logic one-ques-

tion-after-the-other1 as discussed in Section 1 would have re-

sulted in an average of four questions. This value could be

reduced by almost 30% using automatic call flow generation.

4. CONCLUSION

Considering the average duration of a question-response in-

teraction together with common per-minute fees for interac-

tive voice response hosting and the aforementioned monthly

call volume of the application, a 30% reduction of the average

number of asked questions due to automatic call flow genera-

tion could translate to savings of five- to six-figure US dollar

1At this point, it should be mentioned that the actual production system

underwent a continuous tuning cycle to manually optimize the voice user

interface. Several instances of open prompts and user-initiated input were

implemented to cut down the number of questions to a maximum of 3. How-

ever, this effort took several voice interaction designers and speech scientists
more than one year of careful analysis and implementation work.

amounts per month. Furthermore, the likelihood of callers

opting out (i.e., asking for an agent) or hanging up out of

frustration decreases as the conversation speeds up leading to

higher resolution rates and better caller experience. Finally,

automatic call flow optimization as compared to the conven-

tional anecdotic and ad-hoc tuning of the call flow logic can

be magnitudes faster and provide functionality manual call

flows cannot use such as dynamic call flow generation based

on a variety of runtime inputs from user and back-end sys-

tems.

5. ACKNOWLEDGEMENTS

Some of this work’s ideas saw the light of day in brainstorm-

ing sessions involving the following of our dear colleagues:

Krishna Dayanidhi, Peter Krogh, Michael Levy, James Mes-

bur, and Eric Woudenberg.

6. REFERENCES

[1] W. Minker and S. Bennacef, Speech and Human-Machine

Dialog, Springer, New York, USA, 2004.

[2] K. Acomb, J. Bloom, K. Dayanidhi, P. Hunter, P. Krogh,

E. Levin, and R. Pieraccini, “Technical Support Dialog

Systems: Issues, Problems, and Solutions,” in Proc. of

the HLT-NAACL, Rochester, USA, 2007.

[3] M. Walker, S. Whittaker, A. Stent, P. Maloor, J. Moore,

M. Johnston, and G. Vasireddy, “Generation and Evalua-

tion of User Tailored Responses in Dialogue,” Cognitive

Science, vol. 28, no. 5, 2004.

[4] V. Demberg and J. Moore, “Information Presentation in

Spoken Dialog Systems,” in Proc. of the EACL, Trento,

Italy, 2006.

[5] P. Fodor, “Dialog Management for Decision Processes,”

in Proc. of the 3rd Language and Technology Conference:

Human Language Technologies as a Challenge for Com-

puter Science and Linguistics, Poznan, Poland, 2007.

[6] T. Mitchell, Machine Learning, McGraw Hill, New York,

USA, 1997.

[7] C. Shannon, “A Mathematical Theory of Communica-

tion,” Bell System Technical Journal, vol. 27, 1948.

[8] M. Cohen, J. Giangola, and J. Balogh, Voice User In-

terface Design, Addison Wesley, Redwood City, USA,

2004.

[9] D. Suendermann, J. Liscombe, K. Evanini, K. Dayanidhi,

and R. Pieraccini, “From Rule-Based to Statistical Gram-

mars: Continuous Improvement of Large-Scale Spoken

Dialog Systems,” in Proc. of the ICASSP, Taipei, Taiwan,

2009.


