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ABSTRACT
We analyze how fusing features obtained from different mul-
timodal data streams such as speech, face, body movement
and emotion tracks can be applied to the scoring of mul-
timodal presentations. We compute both time-aggregated
and time-series based features from these data streams—
the former being statistical functionals and other cumula-
tive features computed over the entire time series, while
the latter, dubbed histograms of cooccurrences, capture how
different prototypical body posture or facial configurations
co-occur within different time-lags of each other over the
evolution of the multimodal, multivariate time series. We
examine the relative utility of these features, along with
curated speech stream features in predicting human-rated
scores of multiple aspects of presentation proficiency. We
find that different modalities are useful in predicting differ-
ent aspects, even outperforming a naive human inter-rater
agreement baseline for a subset of the aspects analyzed.

Keywords
multimodal analysis, speech recognition, emotion tracking,
motion capture, face tracking, presentation assessment

1. INTRODUCTION
Accurate assessment of performance in presentational skills
is gaining importance in educational institutions and within
workplaces, where the effectiveness and delivery of presenta-
tion tasks are critical in securing teacher licensure, job offers,
business contracts, etc. Multimodal data capture techniques
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based on video, audio and motion feeds provide a rich source
of information for such assessment, but the complexity of
these data streams brings with it a need for signal analysis
tools to automatically process and make sense of this data.

Researchers have made many advances towards understand-
ing and modeling these multimodal data streams. For ex-
ample, Naim et al. [10] analyzed job interview videos of
internship-seeking students and found, using machine learn-
ing techniques, that prosody, language and facial expression
features were good predictors of human ratings of desirable
interview traits such as excitement, friendliness or engage-
ment. Nguyen et al. [11] proposed a computational frame-
work to predict the hiring decision using non-verbal behav-
ioral cues extracted from a dataset of 62 interview videos.
While there is much work on automatic recognition of one or
more social cues and verbal and nonverbal behavioral traits
in the speech and larger multimodal analysis communities
(see for example [9, 12, 14, 15]), this problem has been also
been highlighted as a particularly important one, evidenced
by a number of challenges at international conferences on re-
lated topics [17, 18]. Recently [2] also presented a framework
for collecting multimodal data of subjects giving presenta-
tions for purposes of automated assessment. They further
presented preliminary results suggesting that basic features
in the speech content and delivery, and movements related
to the head, body and hands significantly predicted holis-
tic human ratings of public speaking skills. While those
works focus on (i) time-aggregated, and (ii) hand-selected
features that can each have an explicit interpretation, in this
paper we focus on time-series features that are also moti-
vated from an interpretability standpoint, but are relatively
high-dimensional, since they have to encapsulate informa-
tion about the evolution of the entire time-series. In addi-
tion, we build upon and extend this work to predict not only
a holistic score of presentation proficiency, but other aspects
as well, using a combination of features derived from speech,
visual and Kinect data.



Table 1: Performance standards adapted from the Public Speaking Competence Rubric (PSCR) [16] that human raters were
asked to score each multimodal presentation on.

Score Shorthand Description of Item Competency
Dimension

1 Intro Formulate an introduction that orients the audience to the topic and speaker
2 Org Use an effective organizational pattern
3 Conc Develop a conclusion that reinforces the thesis and provides psychological closure
4 WC Demonstrate a careful choice of words
5 VE Effectively use vocal expression and paralanguage to engage the audience
6 NVB Demonstrate nonverbal behavior that reinforces the message
7 AudAdap Successfully adapt the presentation to the audience
8 VisAid Skillfully make use of visual aids
9 Persuasion Construct an effectual persuasive message with credible evidence
10 Holistic Overall holistic performance

Despite the research advances made so far in multimodal
signal analysis and presentation scoring, there is little work
that explicitly models the temporal evolution of these sig-
nals and exploits this information for presentation scoring
and understanding. Explicitly modeling temporal informa-
tion in such data is important because a person’s presenta-
tion competency need not stay constant over the course of
the presentation – he/she could get fatigued over time, or be
more nervous at the very beginning (resulting in repetitive,
cyclic fidgeting behavior), but gradually settle into a com-
fort zone later. For similar reasons his/her body language
and emotional state can also fluctuate over the time series.
However, current feature extraction approaches that aggre-
gate information across time are not able to explicitly model
temporal cooccurrence patterns; consider for instance that
a certain prototypical body posture follows a second par-
ticular posture in a definitive pattern during certain parts
of the presentation. Capturing such patterns might help us
(i) explicitly understand the predictive power of different
features (such as the occurrence of a given emotion) in tem-
poral context (such as how often did this emotional state
occur given the previous occurrence of another emotional
state), thus allowing us to (ii) obtain features that are more
interpretable. It is this gap that we attempt to bridge in
this study. Specifically, we propose a feature based on his-
tograms of cooccurrences [19, 20, 13] that models how differ-
ent “template” body postures or facial expressions co-occur
within different time lags of each other in a particular time
series. Such a feature explicitly takes into account the tem-
poral evolution of face/body posture and facial features in
different presentation contexts. This feature has been pre-
viously shown to perform well on phone classification tasks
[13] as well as for unsupervised pattern discovery [19, 20].
We aim to explore how much of a benefit such time-series-
based modeling can provide in assessment of presentation
and interview performance.

The rest of the paper is organized as follows: Section 2 goes
into the details of the multimodal data corpus, including
the tasks, data collection and processing, and human scor-
ing of different aspects of presentation proficiency. We then
describe the different Kinect and speech-based features in
Section 3, followed by the results of the regression experi-
ments for presentation score prediction using these features
in Section 4.

2. DATA
2.1 Assessment Tasks and Multimodal Data

Collection
Five public speaking tasks were utilized for data collection.
Among these tasks, the first one, task A, was an“ice-breaker”,
in which the speaker introduced him or herself; this task
is not analyzed due to the personally identifiable informa-
tion involved. Tasks B and C were modeled after prepared
informational speeches, in which the speaker was given a
pre-prepared slide deck and up to 10 minutes to prepare
for the presentation. Task B was a business presentation,
where the speaker was to present a financial report. Task
C is a simulated teaching task on a topic targeting middle
school students. The other two tasks were persuasive and
impromptu speeches. Task D asked speakers to consider a
movie they did not like but nonetheless recommend it to oth-
ers. Task E asked speakers to consider a place inconvenient
to live in and discuss the benefits of living there. Note that
there has no visual aid for for Tasks D and E. Figures 1 and
2 show examples of the different multivariate data streams
recorded.

We collected multimodal data using the following equip-
ment and software tools: (a) Microsoft Kinect (Windows
Version 1) for recording 3D body motions, (b) Brekel Pro
Body Kinect tracking software (v1.30 64 bit version) for
recording 58 body joints’ motion traces in the Biovision hi-
erarchical data format (BVH), and (c) a JVC Everio GZ-
HM35BUSD digital camcorder for audio/video recording.
Note that the camcorder was mounted together with Kinect
on a tripod. Both Kinect and camcorder were placed 1.83m
away from the front of the speaking zone that was marked on
the ground. Additionally, during Task B and C, a SMART
Board projector system was used to show the PowerPoint
slides.

17 volunteers were recruited from within a non-profit orga-
nization, with ten male participants and seven female par-
ticipants. Seven of the participants were experienced pub-
lic speakers from the Toastmasters Club. The rest varied
widely in their experience in public speaking. After being
familiarized with the recording equipment, participants were
informed that they were expected to speak for 4 to 5 min-
utes for Task B and C and 2 to 3 minutes for Task D and E.
For Tasks B and C, which involved PowerPoint slides, they
were given 10 minute to prepare for their presentation. They



 
Figure 1: Example of face tracking.

were not allowed to bring notes during the presentation. In
Task D and E, the participants were given no preparation
time. They would start speaking as soon as they were given
the topic of the impromptu speech. Before each recording,
the speaker was asked to clap, which served as a signal syn-
chronizing the multimodal data. Data from 3 speakers were
lost due to equipment failure. In total, we obtained 56 pre-
sentations from 14 speakers (4 per speaker) with complete
multimodal recordings. After getting raw recordings from
our lab sessions, the motion and video data streams were
synchronized.

2.2 Human Rating
Since the ultimate goal of this study will be developing a
valid assessment for measuring public speaking skills via pre-
senters’ multimodal behaviors, we chose the Public Speaking
Competence Rubric (PSCR) [16] as an assessment rubric due
to its favorable psychometric properties. Using the PCSR
tailored to our tasks, human raters scored these presentation
videos along 10 dimensions that represent various aspects of
presentation proficiency on a five-point Likert scale from 0
to 4 [16]. See Table 1 for the complete list of scoring dimen-
sions.

Five raters were recruited from within an educational testing
company. Two expert raters had background in oral com-
munication/public speaking instruction at the higher educa-
tion level. The other three (non-expert raters) had extensive
experience in scoring essays, but not in scoring public speak-
ing performances. For reliability purposes, the presentations
were double-scored. In the event that the scores between
two raters were discrepant, the following adjudication pro-

cess was used to generate final scores. If the first two raters
did not agree with each other, a third rater (expert) was
brought in to make another judgment, and the final score
assigned was the average of all three scores. However, in the
event that the first two raters agreed with each other, that
score was used as the final score.

2.3 Head pose and eye gaze
A successful presentation entails speaker engagement with
the audience, which translates to head postures and eye
gazes that are necessarily directed towards the audience.
Here, we extract a set of features that target these aspects
of the presentation. Head postures are approximated us-
ing the rotation attribute (i.e., pitch, yaw, and roll) of the
head through Visage’s SDK FaceTrack1, a robust head and
face tracking engine. See Figure 1. The tracking is acti-
vated if and only if the detector has detected a face in the
current frame. Additionally, gaze directions are approxi-
mated through the gazeDirectionGlobal attribute of the Vis-
age tracker SDK, which tracks gaze directions taking into
account both head pose and eye rotation. Note that, differ-
ent from head rotation, gaze directions represent estimated
“eyeball” directions regardless of head postures, and can po-
tentially measure a speaker’s level of engagement with the
audience. Thus, for each presentation, we used the time evo-
lution of basic head pose measurements (Cartesian X, Y, Z
coordinates along with pitch, yaw, and roll) as well as gaze
tracking information over the entire presentation to extract
features.

1http://www.visagetechnologies.com



2.4 Emotion tracking
Facial expressions from presenters also contribute to an ef-
fective presentation. Therefore, we utilized an off-the-shelf
emotion detection toolkit, Emotient’s FACET SDK2, to ana-
lyze facial expressions. FACET outputs the intensity (rang-
ing from 0 to 1) and confidence values for seven primary
emotions (i.e., anger, contempt, disgust, joy, fear, sadness
and surprise). See Figure 2. We primarily focus on the
time-evolution of the estimated intensities of different emo-
tional states for each presentation in order to compute fea-
tures. Note that we faced certain technical challenges dur-
ing emotion intensity tracking, such as: (a) the presenters’
faces were relatively small as compared to the screen size
due to the large distance from the camera, (b) considerable
background brightness from using a SmartBoard during the
informative task, and (c) that presenters frequently turned
their heads during their presentations, which sometimes re-
sulted in inaccurate tracking output. However, since we are
considering the entire time series of emotion data as opposed
to any one particular frame, we hope to minimize the effects
of tracking errors.

3. METHOD

3.1 Computing time-aggregated Kinect features
For time-aggregated Kinect features, we computed statisti-
cal functionals of certain body point markers that correlated
the best with the human-rated holistic scores and that cap-
tured the degree of locomotion and hand movement. A basic
feature set was extracted based on the statistical function-
als (such as the mean and standard deviations of the hip
markers, hand movement markers and their speeds).

3.2 Computing histograms of co-occurrences
(HoC) features

Recall that one of the primary goals of this work is to inves-
tigate the efficacy of time-series features computed on differ-
ent multimodal time series vis-a-vis scoring of multimodal
presentations. The motivation is that explicitly examining
and modeling the evolution of each of these time series will
result in richer features as opposed to time-aggregated fea-
tures. With this in mind, we elucidate below a general
methodology to compute such a feature called histograms
of cooccurrences (or HoC) that can be applied to any mul-
tivariate time-series – in this paper we compute this feature
for the Kinect, Face/Gaze and Emotion data streams. Note
that we compute one high-dimensional HoC feature vector
for each time-series; this is particularly useful in cases like
ours, where we have one rating for an entire time-series. Fur-
ther, the advantage of this feature vector over conventional
time-aggregated one is that it explicitly encapsulates infor-
mation regarding temporal co-occurrence patterns; so, for
example, it would model how often a certain prototypical
body posture (such as folded hands) follows a second proto-
typical posture (say, an open stance) in a definitive pattern
during different parts of the presentation.

So that being said, the idea behind the histogram of cooc-
currence (HoC) feature is to count the number of times dif-
ferent prototypical body postures co-occur with each other
at different time lags over the course of the time series. As

2http://www.emotient.com
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Figure 3: Schematic depiction of the computation of
histograms of cooccurrences (HoC) (adapted from
[13]). For a chosen lag value, τ , and a time step
t, if we find labels m and n occurring τ time steps
apart (marked in gold), we mark the entry of the lag-
τ cooccurrence matrix corresponding to row (m,n)
and the tth column with a 1 (corresponding entry
also marked in gold). We sum across the columns
of this matrix (across time) to obtain the lag-τ HoC
representation.

to what these prototypical body postures are – while this
is an interesting research question in itself, for the purposes
of this paper we use cluster centroids derived from simple
K-means clustering on the space of body postures (in the
training dataset) as prototypical body postures. We exper-
imented with different cluster sizes (16, 32, 64) and found
that 32 clusters gave us the best empirical performance on
the prediction task described below.

Once we perform this clustering, we can replace each frame
of the input time series data matrix H with the best match-
ing cluster label (corresponding to the cluster to which it
belongs). This way, the data matrix is now represented
by a single row vector of cluster labels, Hquant. A HoC-
representation of lag τ is then defined as a vector where
each entry corresponds to the number of times all pairs of
cluster labels are observed τ frames apart. In other words,
we construct a vector of lag-τ co-occurrences where each
entry (m,n) signifies the number of times that the input se-
quence of activation frames is encoded into a cluster label
m at time t (in the row vector Hquant), while encoded into
cluster label n at time t + τ [19, 20, 13]. By stacking all
(m,n) combinations, each interval can be represented by a



Table 2: Speaking proficiency features extracted by our speech rating engine, SpeechRater.
Category Sub-category # of Fea-

tures
Example Features

Prosody
Fluency 24 This category includes features based on the number of words

per second, number of words per chunk, number of silences,
average duration of silences, frequency of long pauses (≥ 0.5
sec.), number of filled pauses (uh and um). See [22] for detailed
descriptions of these features.

Intonation & Stress 11 This category includes basic descriptive statistics (mean, mini-
mum, maximum, range, standard deviation) for the pitch and
power measurements for the utterance.

Rhythm 26 This category includes features based on the distribution of
prosodic events (promincences and boundary tones) in an utter-
ance as detected by a statistical classifier (overall percentages of
prosodic events, mean distance between events, mean deviation
of distance between events) [22] as well as features based on the
distribution of vowel, consonant, and syllable durations (overall
percentages, standard deviation, and Pairwise Variability Index)
[5].

Pronunciation Likihood-based 8 This category includes features based on the acoustic model like-
lihood scores generated during forced alignment with a native
speaker acoustic model [6].

Confidence-based 2 This category includes two features based on the ASR confidence
score: the average word-level confidence score and the time-
weighted average word-level confidence score [7].

Duration 1 This category includes a feature that measures the average dif-
ference between the vowel durations in the utterance and vowel-
specific means based on a corpus of native speech [6].

Grammar Location of Disfluencies 6 This category includes features based on the frequency of
between-clause silences and edit disfluencies compared to within-
clause silences and edit disfluencies [3],[4].

Audio Quality – 2 This category includes two scores based on MFCC features that
assess the probability that the audio file has audio quality prob-
lems or does not contain speech input [8].

single column vector where the elements express the sum of
all C2 possible lag-τ co-occurrences (where C is the number
of clusters; in our case, 32). See Figure 3 for a schematic
of the HoC feature computations. We can repeat the proce-
dure for different values of τ , and stack the results into one
“supervector”. Note however, that the dimensionality of the
HoC feature increases by a factor of C2 for each lag value τ
that we want to consider. In our case, we empirically found
that choosing four lag values of 1 to 10 frames (correspond-
ing to 100-1000ms) gave an optimal prediction performance
on regression experiments described below.

3.3 Computing speech features
Regarding measuring speech delivery skills demonstrated in
public speaking, we included features widely used in auto-
mated speech scoring research area, covering diverse mea-
surements among lexical usage, fluency, pronunciation, prosody,
and so on. In particular, following the feature extraction
method described in [6], we used SpeechRater, a speech rat-
ing system that processes speech and its associated tran-
scription to generate a series of features on the multiple
dimensions of speaking skills, e.g., speaking rate, prosodic
variations, pausing profile, and pronunciation, which typi-
cally is measured by Goodness of Pronunciation (GOP) [21]
or its derivatives. For more details on these features, please
see Table 2.

3.4 Regression experiments
We used linear support vector machines (SVM) to perform
regression experiments [1] on each of the 10 scoring dimen-
sions with leave-one-speaker-out (or 14-fold) cross-validation.
We experimented with both linear as well as radial basis
function (RBF) kernels and empirically found that the for-
mer performed better on the prediction task. This could be
due to the large dimensionality of the HoC feature space. We
further tuned hyperparameters using a grid-search method.

4. OBSERVATIONS AND RESULTS
Table 3 lists the performance of various feature sets in pre-
dicting different human-rated dimensions of the multimodal
presentation. We compare the performance of several fea-
ture sets—speech features obtained from SpeechRater, time-
aggregated Kinect features, time-series HoC-based Kinect,
Face and Emotion features as well as their combinations—as
measured by the magnitude of Pearson correlation with the
final human-adjudicated score. We also present, the Pearson
correlations between the first and second human raters (de-
noted for ρR1R2), and finally, for benchmarking purposes,
the Pearson correlation between each of the individual hu-
man raters’ scores and the final human-adjudicated score.
These last two correlation numbers can be thought of as a
upper bound on the prediction performance.



Table 3: Performance of various feature sets in predicting ten different aspects of multimodal presentation proficiency. The
numbers represent Pearson correlations with the final human-adjudicated score (except for the row enclosed by dashed lines,
which represents Pearson correlations between scores predicted by human raters 1 and 2, ρR1R2). The best machine score
in each dimension relative to ρR1R2 are marked in bold. Also shown as a reference benchmark, is the Pearson correlations
between each of the raters (1,2) and the final human-adjudicated score.

Score Dimension
Rater Feature Set 1 2 3 4 5 6 7 8 9 10

Intro Org Conc WC VE NVB AudAdap VisAid Persuasion Holistic

Machine

Kinect HoC 0.13 0.14 0.16 0.23 0.01 0.25 0.06 0.66 0.24 0.03
Kinect Aggregated 0.12 0.53 0.09 0.08 0.16 0.26 0.31 0.03 0.11 0.12
Speech 0.28 0.34 0.03 0.12 0.37 0.22 0.30 0.75 0.48 0.44
Kinect Both 0.13 0.35 0.19 0.23 0.01 0.27 0.18 0.69 0.25 0.01
Speech + Kinect 0.20 0.17 0.16 0.16 0.23 0.08 0.07 0.82 0.34 0.31
Face HoC 0.45 0.39 0.09 0.09 0.33 0.39 0.47 0.16 0.49 0.69
Emotion HoC 0.21 0.14 0.49 0.20 0.06 0.65 0.26 0.01 0.13 0.03
Speech + Face HoC 0.39 0.01 0.52 0.05 0.25 0.05 0.13 0.03 0.27 0.03
Speech + Emo HoC 0.36 0.04 0.47 0.15 0.03 0.01 0.07 0.03 0.32 0.02
All 0.15 0.18 0.18 0.09 0.29 0.08 0.06 0.79 0.34 0.36

Inter-rater agreement, ρR1R2 0.24 0.33 0.48 0.11 0.60 0.40 0.15 0.88 0.02 0.39

Human
Rater 1 0.70 0.76 0.86 0.79 0.89 0.82 0.70 0.94 0.69 0.81
Rater 2 0.80 0.83 0.83 0.61 0.86 0.83 0.73 0.97 0.63 0.82

Let us first look at the human-rater correlations. Consider
the the human inter-rater agreement ρR1R2 which is the cor-
relation between the ratings of the first and second human
raters, who need not be experts in the field. We observe
only two cases where ρR1R2 is greater than 0.5, and these are
also the only cases where ρR1R2 outperforms machine corre-
lations. This exemplifies the inherent subjectivity and diffi-
culty involved in scoring various aspects of presentation pro-
ficiency – non-expert human raters tend to disagree when it
comes to rating aspects of performance such as word choice,
persuation and audience adaptability, for example, which are
higher-level constucts that are not easily defined. However,
the correlations between each of these raters’ scores and the
final rating for each scoring dimension are much higher, and
close to 1 in many cases. Recall that the final score was
adjudicated by an human expert with substantial prior ex-
perience in the field after considering the ratings of raters
1 and 2, and that this score need not be a simple average
of those scores3. This suggests that although non-experts
are able to score some aspects of presentation proficiency
in line with how an expert would, a substantial amount of
expertise is required for the scoring task. In other words,
this is a non-trivial problem for not only machines to solve,
but naive humans as well.

Let us now focus on the last four scoring dimensions – for
instance, the 8th score, representing skillful use of visual
aids, is predicted with correlations coming close to the hu-
man inter-rater agreement correlation ρR1R2 . Kinect HoC
features and SpeechRater features are particularly useful in
this regard, and a combination of these features provides the
best correlation of 0.82. This suggests that features that cap-
ture temporal information about body movement and speech
are very useful in predicting how well subjects use visual
aids in presentations, which makes intuitive sense. Further,
we see that the 7th, 9th and 10th score dimensions, resp-

3Nonetheless, notice that the final adjudicated score is some
nonlinear functional of the individual rater scores would re-
sult in a bump in correlation values.

resenting audience-adaptation, persuasiveness, and overall
holistic performance respectively, are predicted well by face
and gaze (time-series) features in particular. This, again,
stands to reason – maintaining an appropriate head posture
and direction of one’s gaze are important for communicat-
ing effectively and persuasively to a given audience. Note
also that in these cases the machine correlations are higher
than the human agreement correlation ρR1R2 . Notice that in
some of these cases feature combinations may perform worse
than the standalone features themselves – this could be due
to the relatively larger dimension of the feature fusion (this
is especially true in the case of the HoC features, which are
sparse and have of the order of 10000 dimensions).

We see that time-series features computed over the intensi-
ties of different emotional states (estimated from facial ex-
pressions) perform much better than other features in pre-
dicting the 6th set of scores (non-verbal behavior). This
reconfirms earlier findings in the literature that emotional
state information is an important predictor of non-verbal
aspects of performance (for example, [10, 9]). While speech
and face/gaze features are useful features in predicting the
5th scoring dimension (vocal expression), these correlations
are not as high as the human agreement correlation ρR1R2 .

As far as the other four scoring dimensions are concerned,
although our features perform much better than the baseline
in all cases, these may not be readily interpretable – since
these scores capture higher-level meta-characteristics of the
presentation such as quality of introduction, conclusion, or-
ganization skill and word choice – and so it may not be clear
why these scores perform well at the present time. Indeed,
that we observe that speech and face/gaze features perform
well on scoring dimensions #1 and #3 while combinations of
our Kinect features perform well on scoring dimensions #2
and #4 might suggest that these features capture important
behavioral aspects of these meta-characteristics, but under-
standing and interpreting the reason why is out of the scope
of the current paper. Future work will focus on more tailored
features in order to predict these scores in an interpretable



manner. For example, these could be features that specif-
ically look at the semantic/syntactic content of the speech
for word choice, or that look at the beginning and ending
portions of the time-series so as to focus on the introduction
and conclusion.

5. CONCLUSIONS
We have presented a comparative analysis of three differ-
ent feature sets – time-aggregated Kinect features, time-
series (or histograms of cooccurrence) Kinect features and
SpeechRater features (this combines information from both
across and within time-series) – in predicting different human-
rated scores of presentation proficiency. We found that cer-
tain scoring dimensions were better predicted by speech fea-
tures, some on Kinect features, and others on combinations
of all features. We further observed that these features
allowed us to achieve prediction performance near human
inter-rater agreement for a subset of these scores. Although
there is much room for improvement along the lines of bet-
ter, more interpretable and predictive features as well as ma-
chine learning algorithms and methods (indeed, we have only
experimented with support vector regression here), these ex-
periments provide us significant insight into understanding
how to design better techniques for automated assessment
and scoring of public speaking and presentation proficiency.
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