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ABSTRACT
We analyze the efficacy of different crowds of naïve human raters
in rating engagement during human–machine dialog interactions.
Each rater viewed multiple 10 second, thin-slice videos of native and
non-native English speakers interacting with a computer-assisted
language learning (CALL) system and rated how engaged and disen-
gaged those callers were while interacting with the automated agent.
We observe how the crowd’s ratings compared to callers’ self ratings
of engagement, and further study how the distribution of these rating
assignments vary as a function of whether the automated system
or the caller was speaking. Finally, we discuss the potential appli-
cations and pitfalls of such crowdsourced paradigms in designing,
developing and analyzing engagement-aware dialog systems.

CCS CONCEPTS
• Human-centered computing → Human computer interaction
(HCI); • Computing methodologies → Discourse, dialogue and
pragmatics;
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1 INTRODUCTION
The increasing multimodality of human–computer interaction tech-
nologies affords researchers and developers more opportunities to
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improve the efficacy of the interaction and overall user experience.
An important aspect of this process involves the measurement, track-
ing and maintenance of user engagement over the course of the
interaction. Toward this end, multiple studies in the literature have
attempted to define and develop annotation schemes for user engage-
ment and user involvement in interactions to aid subsequent manual
analysis as well as automated processing [5, 12, 22].

Psychologists have long been studying how well laypeople rate
different aspects of human behavior by only viewing short dura-
tions, or thin slices, of video. Ambady and Rosenthal conducted a
seminal study where they asked complete strangers to first view 2,
5 and 10 second silent segments of university teachers’ classroom
lectures, and then rate their non-verbal behavior [2]. They found
that these naïve ratings predicted expert-rated1 gold-standard ones
of the same behaviors with surprising accuracy. Multiple research
studies have since replicated the efficacy and sufficiency of such a
thin-slice approach in a variety of application domains, including
the judgement of conversational dynamics during negotiations [8],
analysis of medical dialog [28], evaluation of sales effectiveness [1],
assessment of socioeconomic status [16], assessment of personality
traits [6, 24], detecting conflict in team interactions [14] and even de-
tection of psychopathy [11], among others. Much progress has also
been made in using the thin-slice approach for automated feature
extraction and machine learning. For instance, Nyugen and Gatica-
Perez showed that extracting audiovisual, dyadic and non-verbal
feature cues from thin slices of real job interviews were predictive
of hirability impressions of those employment applicants [21].

Recent research in the literature has extensively analyzed the role
of engagement in multimodal dialog systems. For example, Yu et
al. presented a non-task oriented engagement-aware dialog system
which was trained by having 2 expert annotators rate how engaging
different strategies were [31]. Multiple research studies have exam-
ined the annotation and prediction of user engagement in videos
of multi-party dialog, and have typically relied on gold-standard
annotations rated by a few annotators (see for instance [3, 19, 23]).
Such analysis and prediction of engagement and other learner states
are also critical to the design and development of intelligent tutors
and computer-assisted language learning (CALL) systems in the
education domain [9, 10]. Closest to our study is the work of Salam

1The experts, in this case, were people who had substantial interactions with the
same teachers in question.
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et al., who analyzed engagement in the human-robot interaction do-
main, where they had a large number of crowdsourced participants
view 20-120 second video clips of people interacting with a robot
and rate them on multiple aspects of engagement and personality
[29]. They found a good inter-rater agreement for engagement anno-
tations, and succesfully used these crowdsourced ratings for further
automated analysis and to train engagement classifiers. However,
this study aims to analyze even thinner slices of video of 10s in
duration. Also, with the exception of the Salam et al. study, there
has not been much exploration into the use of a large number of
crowdsourced raters for engagement annotation. The present study
extends a recent smaller-scale study we conducted [25] to a much
larger scale.

While many studies have leveraged the use of thin slices of audio
and video for automatic processing and prediction of variables of
interest, there are none that have explicitly looked at this in the case
of human–machine dialog interactions, to our knowledge. That being
said, we want to specifically answer the following broad research
questions in this particular domain: (1) how do caller engagement
ratings of a small crowd of individuals compare to callers’ self-
assessment of their own engagement levels; (2) how do engagement
ratings vary depending on whether the caller is responding or listen-
ing to the automated agent; (3) how consistent are assigned ratings
across a broad sample of video data and different raters; and finally,
(4) can we understand how different naïve raters grossly performed
on the rating task. In order to answer these questions, we will an-
alyze audio and video data collected from interactions between a
human and a dialog system in the context of five CALL applica-
tions designed to expose English language learners to commonplace
workplace scenarios where they can practice their conversational
English skills. The rest of the paper is organized as follows: Section
2 presents an overview of how we collected the videos of human–
machine dialog used in this study. Section 3 describes the experi-
mental design of the engagement rating task, followed by a detailed
description of observations and experimental results in Section 4.
We conclude with a discussion of the implications for the design and
development of engagement-aware dialog systems.

2 AUDIOVISUAL DIALOG DATASET
GENERATION

We used the open-source HALEF dialog system2 to collect audio
and video data of human–machine dialog interactions. HALEF is an
open-source, modular, cloud-based dialog system that is compatible
with multiple W3C and open industry standards. For more details on
the HALEF architecture and components, see [26]. We used the Ama-
zon Mechanical Turk platform for our crowdsourcing data collection
experiments. Crowdsourcing (particularly via Amazon Mechanical
Turk) has been used in the past for the assessment of spoken dialog
systems (SDSs) as well as for collection of interactions with SDSs
[15, 20, 27]. Researchers have also developed tools to rapidly anno-
tate videos of interactions that exploit the power of the crowd (see for
e.g. [18]). We leveraged the aforementioned HALEF dialog system
to develop conversational applications within this crowdsourcing
framework and collect data over Amazon Mechanical Turk. In this
iterative data collection framework, the data logged to the database

2http://halef.org.

during initial iterations is transcribed, annotated, rated, and finally
used to update and refine the conversational task design and models
(for speech recognition, spoken language understanding, and dialog
management). In addition to calling into the system to complete the
conversational tasks, callers were requested to fill out a 2-3 minute
survey regarding different aspects of the interaction, such as their
overall call experience, how well the system understood them and to
what extent system latency affected the conversation. Importantly
for our task, they also rated how engaged they felt while interact-
ing with the system. Since the targeted domain of the tasks in this
study is conversational practice for English language learners, our
crowdsourcing user pool comprised non-native speakers of English;
however, we also collected data from native speakers of English in
order to test the robustness of the system and to obtain expected
target responses from proficient speakers of English. In the data
sample considered in this study, approximately 59% of videos were
from people who self-reported their native language to be English.
For the purposes of this engagement study, we chose to extract video
data collected from the conversational dialog tasks shown in Table 1.
The selected tasks provide a good mix of different types of dialog in-
teraction across domains, open-endedness of response, and length of
the interaction, with an aim to allow for a good coverage of different
engagement states for our video annotation experiments.

3 METHOD
3.1 Rating
We investigated three crowdsourced rating paradigms – a small-scale
internal study, as well as two larger-scale studies on Amazon Me-
chanical Turk, the first of which targeted breadth (rating a large
number of video segments), while the second targeted depth (obtain-
ing a large number of ratings for each video segment). See Table 2
for a breakdown of number of participants and video segments in
each study paradigm.

For the internal study, we requested 31 participants3 from within
our R&D project team to assign an engagement rating to 10-second
video segments on a 1–5 Likert scale. Raters assigned a rating of ‘0’
or unscorable if there were issues with the audio or video, such as
the lack of an audio or video channel4. We also asked them to rate
the audio and video quality, as well as who was speaking – system,
human, both, or neither. Note that we did not have raters go through
any special training or calibration process.

We deployed an extension version of this study on Amazon Me-
chanical Turk with more raters and more video segments. The first
one, had a total of 102 crowdsourced participants rate 1020 video
segments, with each rater rating 30 videos to allow sufficient ratings
to compute rater reliability. However, this study does not source
a large number of ratings per unique video segment (only 3). The
second study aims to address this gap, sourcing 30 ratings per video
segment from a larger rater pool of 300 raters, for a smaller number
of video segments (100). In this manner, the first study allows us to

3Two of our raters rated a set of 30 calls between them, which is why we have 31
raters in practice instead of the original 30 that was part of the experimental design.

4While we automatically discarded files that had both no audio and no video, we
retained files that had either the audio or video channel recording and instructed raters
to rate engagement based on all available channels. We did this in order to model
real-life situations where sometimes only one channel might be available for automated
engagement prediction.
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Table 1: The details of conversational tasks from which videos were sampled for the purposes of this experiment.

Item Brief Task Description # of Call Duration (sec)
Calls Mean Std. Dev.

Job Placement Interview Interact with an interviewer at a job placement agency 206 345.2 114.1
Coffee Shop Order Order food and drink from a coffee shop 359 135.3 66.8
Billing Dispute Dispute charges on a customer phone bill 139 154.0 79.4
Conference Ad Answer a caller’s questions about a conference ad posting 61 112.7 86.9
Meeting Request Request your boss for a meeting and to review slides 178 80.2 35.9

Table 2: Experimental design.

Crowdsourcing Paradigm
Internal Study AMT Study 1 AMT Study 2

# of video segments 300 1020 100
# of ratings/video segment 3 3 30
# of raters 30 102 300
# of ratings/rater 30 30 10
Types of sampling Both Both Uniform only

Table 3: Dimensions along which our pool of naïve raters rated video segments. Note, however, that while callers self-rated their engagement
levels over the course of the full call, the crowd had to make engagement judgements solely based on 10 second samples of those calls.

Rating Description Caller Crowd
Caller Engagement A qualitative measure of caller’s engagement with the task or the system, ranging from highly

disengaged (1) to highly engaged (5).
✓ ✓

Audio quality This metric measures, on a scale from 1 to 5, how clear the caller audio is. A poor audio quality
rating would be marked by user responses dropping in and out of the call, being muffled, garbled,
echoing or inaudible.

✓

Video quality This metric measures, on a scale from 1 to 5, the video quality of the call. A poor quality rating
here would involve issues with lighting, other problems with the video (such as pixellation,
blocking artifacts, non-constant background, etc.) and if the user’s head is not located in the
center of the image as instructed in the caller guidelines.

✓

Interlocutor Identity Who was speaking in the video – the automated system, the caller, both, or neither. ✓

obtain ratings for a large number of video segments which can sub-
sequently be used to train engagement classifiers, while the second
allows us to study the accuracy of ratings assigned by the crowd for
a smaller set of video segments.

3.2 Experimental Design
We processed the videos using the following steps for use in all study
paradigms (refer to Table 2 for statistics):

(1) First, in order to remove files with empty audio/video record-
ings, we validated the codecs of each video using the ffmpeg
toolkit to ensure their integrity, and discarded any video that
was found to have either corrupted video or audio codec.

(2) Using ffmpeg, we split each video into segments of 10 seconds
each. We discarded the first and last segments of each video
during this process in order to (i) remove pixellated video or
spurious audio that can be recorded at the beginning of calls
during the establishment of the connection, and to (ii) control
for the variations in user engagement states before and after
performing the task.

(3) From this newly-created corpus of 10-second video segments,
we generated 300 unique segments: (a) 150 randomly-sampled
segments, and (b) 150 segments based on uniform sampling
from the distribution of engagement ratings assigned by the
callers themselves (i.e., 30 samples from each of the class
labels from 1 to 5). We did this in order to (i) control for
the effect of class label imbalance (for instance, there are far
fewer ’1’ ratings than ’3’), (ii) ensure that we had a somewhat
uniform distribution of video instances across the engagement
spectrum for laypeople to rate, and (iii) ensure that we have
adequate training instances from each class to train automated
engagement classifiers in the future.

(4) We required each video segment to be rated by at least 3
unique raters (and in the case of AMT Study 2, 30 raters).
Note that we took care to ensure that no rater rated the same
segment twice.

The above experimental design allows us to perform several in-
sightful statistical analyses: (i) the performance of different indi-
vidual raters in rating 30 videos, (ii) the consistency of assigned
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Figure 1: Engagement distributions across the two sampling conditions.

ratings for each of the 300 unique videos, and (iii) how well callers’
self-assigned engagement ratings compare to those assigned by our
small crowd of naïve raters.

4 OBSERVATIONS AND ANALYSES
4.1 How did engagement ratings vary as a

function of how the data was sampled?
Figure 1 shows the distribution of non-zero engagement ratings,
across all three study paradigms, assigned by our crowd of raters
in both the randomly-sampled 10s videos as well as those based
on uniformly sampling from the distribution of engagement ratings
assigned by the callers themselves. We also show for comparison the
callers’ self-ratings of engagement in both cases, though note that
these were originally assigned at the level of the full-call. Plotting the
latter allows us to visualize the inherent distribution of engagement
labels in the original dataset. Callers rated themselves as mostly
engaged, resulting in a skew towards the higher end of the rating
spectrum (ranging from highly disengaged to highly engaged) as
seen in the random sampling case. While the distributions of crowd
ratings somewhat mirror the original self-ratings, as expected, this
is surprisingly not the case with the uniform sampling condition;
instead the distribution of crowd ratings mirrors the random condi-
tion, with disproportionately more segments being rated as engaged
(i.e., ratings of 4 or 5) than disengaged (i.e., ratings of 1 or 2). This
observation, which is consistent across different study paradigms,
might be because the level of engagement observed in 10 second
thin slices is not indicative of the overall engagement of the caller
over the entire interaction, which stands to reason considering that a
person’s engagement level evolves over time depending on multiple
factors [4, 5]. We will revisit this hypothesis in Section 4.4.

4.2 How did engagement ratings vary as a
function of who was speaking?

We next analyzed how the engagement distributions varied as a
function of who was speaking in the 10s video segments – the

automated system, the caller, or both (see Figure 2). We observed
that most segments involved both parties speaking, and callers were
rated as most engaged on average in this condition. Interestingly,
crowd engagement ratings as dropped slightly on average when
only the caller was speaking, and dropped further when only the
system was speaking. This trend was, again, consistent across study
paradigms. This suggests that users were most engaged when they
were listening to short system questions and getting ready to respond,
but their engagement levels dropped if either (i) the system prompt
was too long, or (ii) they were giving a long answer to the question
posed by the system and were thinking about their response.

4.3 How many ratings are sufficient?
In order to understand how consistently crowd engagement ratings
were between our three study paradigms, we computed correlations
between average ratings obtained for the 100 video segments that all
three studies have in common. We observed the correlation between
the two large-scale MTurk studies to be as high as 0.74 (p ≈ 0),
while correlations between the internal study and Studies 1 and 2
were also high and statistically significant: 0.58 and 0.73, respec-
tively. This clearly suggests that (i) the crowdsourced ratings are
generally consistent with each other, and (ii) the correlations be-
tween ratings increase as a function of the number of ratings per
video considered.

4.4 How well did the crowd ratings correlate with
caller self-ratings?

We found the Pearson correlation between the average crowd en-
gagement rating and the corresponding counterpart self-rated by the
original caller to be low and close to zero for all study paradigms
(ρAMT Study1 = 0.03(p = 0.73);ρAMT Study2 =−0.05(p = 0.15);
ρInternalStudy = 0.15(p = 0.009)). This could be due to the lack of
rater training and/or calibration; however, as we have mentioned
earlier, the crowd viewed and rated only 10 second segments, while
caller self-ratings were assigned for the entire video interaction. This
is important since user engagement likely varies over the course
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Figure 2: Engagement distributions as a function of interlocutor identity, i.e., who was speaking in the 10 second segments – the
automated agent, the caller, or both.
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Figure 3: Histogram distributions of audio and video quality as rated by the crowd.

of the interaction (see for example [4, 5]), and the overall caller
self-rating is more like an average engagement value over the entire
interaction. In addition, there remains the possibility of caller bias
while self-rating calls, i.e., people might tend to rate themselves
as more engaged than they actually were, for instance. Yet another
factor influencing the crowd rating could be the quality of data from
either the audio or video channel. However, Figure 3, which plots
the distribution of audio and video quality ratings (on a 1–5 Likert
scale, from least satisfactory to most satisfactory) as assigned by the
crowd, suggests that a large number of video segments were rated
as being of satisfactory quality (mean ≈ 3.5), so while there might
have been some audio or video files which were of poor quality, this
is unlikely to have greatly impacted the observed correlation trends.

Table 4: Inter-rater agreement statistics computed for our three
different experimental paradigms.

Statistical Metric Value
AMT Study 1 AMT Study 2 Internal Study

Krippendorff’s α [17] 0.273 0.273 0.401
Conger’s κ [7] 0.272 0.272 0.399
Scott’s π [30] 0.272 0.272 0.400
Gwet’s γ [13] 0.7 0.7 0.699

4.5 How consistently did raters rate video
segments?

In order to understand how consistently raters rated each of the
videos in the different study paradigms, we computed various sta-
tistical measures of inter-rater agreement on our dataset. See Table
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4. We see that the multiple rater versions of Krippendorff’s α , Con-
ger’s κ (which is an extension of Cohen’s κ to more than two raters)
and Scott’s π values are in close agreement: 0.27 for the large-scale
AMT paradigms and 0.4 for the internal study. This suggests a low to
moderate agreement between raters, which is understandable given
that these are naïve raters who were not given too much instruction
or rater training. However, notice that the Gwet’s γ is high (0.7).
Nonetheless, keep in mind that our case is different from the tradi-
tional use cases for these statistical metrics (where the number of
raters is much lower than the numbers examined in this study), since
the canonical matrix in our case is very sparse.

The low inter-rater agreement suggests that one perhaps needs
more video context for accurate rating (assuming that the metrics
are correct and make sense in our use case, which they may not).
Therefore, a potential avenue for future work may involve examining
thin-slices of longer length.

5 DISCUSSION AND OUTLOOK
This paper has presented an experimental design and statistical anal-
ysis paradigm to understand how well crowds of human annotators
rate engagement in 10 second thin-slice videos of a caller interacting
with a spoken dialog system. We explored different crowdsourcing
study paradigms designed to either obtain a large number of rat-
ings to train automatic classifiers or to analyze the accuracy and
reliability of the crowd, and found that the observations and rating
trends from these three studies were largely consistent with each
other. We further explored two different sampling paradigms – one
where videos were picked at random, and the other where we equally
sampled videos from each rating label (based on caller self-ratings),
and found, interestingly, that it is unlikely that presenting both sets
of videos together could have hypothetically influenced the rating
distribution in the latter case to mirror that of the former. Rather a
more likely explanation is our finding that caller self-ratings over
an entire video dialog are uncorrelated with, and not predictive of
the engagement values in thin slices of that interaction. This could
be because engagement ratings vary considerably over the entire
interaction, a proposition also supported by multiple studies in the
literature. This calls into question the usefulness of an aggregated rat-
ing over the entire call as well as the reliability of user self-ratings5.
Furthermore, while independent trained experts’ ratings of our 10
second clips might be one of the best indicators of the accuracy of
our crowd ratings, the relatively high correlations between our three
crowdsourcing study paradigms already suggests that these ratings
might be useful for the purpose of training automated engagement
detectors and classifiers. Having said that, future work will investi-
gate in more detail the moderate values obtained for the inter-rater
reliability metrics presented here; specifically, how applicable these
metrics are to our case of a sparse canonical matrix and how to
modify or extend them appropriately in case the specific mathemat-
ical assumptions involved in their calculation are violated by our
use-case.

5Note that this means we cannot guarantee that the distribution of segments obtained
for the “uniform” sampling condition was truly representative of the five different
engagement levels.

The study also presented other useful findings for the design and
development of engagement-aware multimodal dialog systems. Un-
surprisingly, we found that caller engagement varies as a function
of whether caller or system were speaking, with callers exhibiting
higher engagement levels in general when they were speaking or
both were speaking as compared to when the system was speak-
ing, particularly for longer system prompts. Ensuring that caller
engagement does not drop during such periods in an important
consideration for dialog design. Furthermore, while we observe an
influence between the crowd ratings and audio/video quality, it is
important to rate and take such data into account nonetheless as
this situation is representative of a real-world dialog system setting,
where there could be delays and audio/video quality problems due
to network bandwidth and connectivity issues. Future work will
look to leverage such ratings toward the training of more accurate
dialog-context-aware engagement classification modules.
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