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Abstract

So far, all conventional voice conversion approaches are
text-dependent, i.e., they need equivalent training utter-
ances of source and target speaker. Since several recently
proposed applications call for renouncing this require-
ment, in this paper, we present an algorithm which finds
corresponding time frames within text-independent train-
ing data. The performance of this algorithm is tested by
means of a voice conversion framework based on linear
transformation of the spectral envelope. Experimental re-
sults are reported on a Spanish cross-gender corpus uti-
lizing several objective error measures.

1. Introduction
Voice conversion is the adaptation of the characteristics
of a source speaker’s voice to those of a target speaker.
Over the last few years, the interest in voice conversion
has risen immensely. This is due to its application to
the individualization of text-to-speech systems, whose
voices, in general, have to be created in a rather time-
consuming way requiring human assistance [1].

Conventional voice conversion techniques are text-
dependent. I.e., they need equivalent utterances of source
and target speaker as training material which can be au-
tomatically aligned by dynamic time warping [2]. This
procedure is necessary since the training algorithms re-
quire corresponding time frames for feature extraction.

An even more challenging task is voice conversion for
speech-to-speech translation, nowadays one of the most
challenging tasks of speech and language processing [3].
Here, the aim is the conversion of the standard voice of
the text-to-speech module speaking a target language to
the voice of the input speaker using a source language.
Hence, for training, one of them has to utter the training
sentences in the other’s language and, for testing, we even
need bilingual utterances of both speakers [4].

The precondition of having equivalent utterances is
inconvenient and, often, results in expensive manual

work, since, e.g., new speech material must be recorded
or bilingual speakers are required.

Therefore, in Section 2, we propose an algorithm
which finds corresponding time frames within text-
independent training data. As an example, this algorithm
is embedded into a well-studied voice conversion frame-
work based on linear transformation of the spectral enve-
lope [2]. This technique is briefly described in Section 3.
Finally, in Section 4, experimental results are reported on
a Spanish cross-gender corpus utilizing several objective
error measures.

2. On Finding Corresponding Time Frames
within Unaligned Speech Data

In conventional voice conversion training, we need equiv-
alent utterances of source and target speaker that should
feature a high degree of natural time alignment and a sim-
ilar pitch contour [1]. Through applying dynamic time
warping, we finally obtain a reasonable mapping between
the time frames of the speech data, which means that
corresponding frames represent corresponding phonetic
units.

In case we do not have this time alignment but dis-
tinct utterances, we are able to find corresponding artifi-
cial phonetic classes by means of a straight-forward ap-
proach proposed in [5]. As this technique only provides
one frame pair per phonetic class, it is only helpful if a
small number of parameters is to be estimated. The au-
thors utilized it to determine up to 64 parameters for de-
scribing the warping function of VTLN-based voice con-
version, but they stated that the naturalness of the output
speech suffers for parameter numbers greater than eight.

Describing the characteristics of a speaker’s voice
more exactly seems to require essentially more degrees
of freedom than in the case of VTLN-based voice con-
version. For instance, [4] reported for their voice conver-
sion system based on a Gaussian mixture model (GMM)
and linear transformation in cepstral space up to 64 GMM
components, 40-dimensional feature vectors and full co-



variance matrices. This large number of parameters could
only be reliably estimated by being provided about 64
sentences of time-aligned training data.

Consequently, the baseline algorithm for finding cor-
responding artificial phonetic classes needs to be ex-
tended in order to obtain frame pairs which are compara-
ble to the text-dependent paradigm concerning their num-
ber and reliability.

In the following, we describe the preprocessing of the
speech signal and its segmentation into artificial phonetic
classes, the mapping between classes of source and target
speaker and the extraction of corresponding time frames.

2.1. Preprocessing

Since the advantages of pitch-synchronous speech mod-
ification and analysis are well-studied, this approach has
been also successfully applied to voice conversion [1].

To extract pitch-synchronous frames from a given
speech signal, we use the algorithm described in [6]. In
voiced regions, the frame lengths depend on the funda-
mental frequency, in unvoiced regions, the pitch extrac-
tion algorithm utilizes a mean approximation.

By applying discrete Fourier transformation without
zero padding to the frames, we obtain complex-valued
spectra with distinct numbers of spectral lines. Since the
algorithms described in this paper require spectra of the
same number of spectral lines, we normalize them by
means of complex cubic spline interpolation to the max-
imum number of spectral lines of all frames. In the fol-
lowing, these spectra are referred to as X .

2.2. Automatic Segmentation

Now, we are ready to distribute the set of spectra among
K well-distinct classes which can be regarded as artificial
phonetic classes. This is done by clustering the magni-
tude spectra with the help of the k-means algorithm us-
ing the squared Euclidean distance as discrimination cri-
terion. K-means delivers the class members as well as
their centroid spectra X̄k.

2.3. Class Mapping

During training, we first preprocess and segment the
given speech material of source and target speaker as de-
scribed above. We get the source centroids X̄k and the
target centroids Ȳl. Now, for each target class l, we want
to know the corresponding source class k(l). When com-
paring spectral vectors of different speakers, it is helpful
to compensate for the effect of speaker-dependent vocal
tracts. This is done by using dynamic frequency warping
and, afterwards, we are allowed to assess the similarity of
two classes by means of the Euclidean distance:

k(l) = arg min
κ=1,...,K

DDFW(X̄κ, Ȳl) . (1)

Here, DDFW is the distance between the frequency-
aligned spectra derived from X̄κ and Ȳl by dynamic fre-
quency warping.

2.4. Extracting Corresponding Time Frames

Once we have mapped one source cluster to each target
cluster, we can shift the latter in such a way that each
centroid Ȳ coincide with the corresponding source cen-
troid X̄ . Finally, for each shifted target cluster member
Y ′ = Y − Ȳ + X̄, we determine the nearest member
of the mapped source class, X , using the Euclidean dis-
tance. The desired spectrum pairs consist of the respec-
tive unshifted target spectra Y and the determined corre-
sponding source spectra X :

X = arg min
χ

|χ − Y − X̄ + Ȳ | . (2)

3. Voice Conversion Based on Linear
Transformation

Already in the middle of the 90s, [2] presented a method
for statistical learning of the correspondence between
spectral parameters measured from two different speak-
ers uttering the same text. This approach and its exten-
sion by [1] has been adopted by most people dealing with
voice conversion nowadays, cf. e.g. [4] or [7].

In the following, we briefly explain the basic idea
of linear-transformation-based voice conversion and de-
scribe how we get from time to feature space and vice
versa.

3.1. The Main Concept

Let xM
1 be a sequence of M training feature vectors

(whose nature is to be explained in Section 3.2) which
characterizes speech of the source speaker and yM

1 the
equivalent of the target speaker. Then, we use the com-

bination of these sequences zM
1 =

(

x1

y1

)

, . . . ,

(

xM

yM

)

to

estimate the parameters of a GMM (αi, µi, Σi) with I

components for the joint density p(x, y) [1].
In the operation phase, a target feature vector y is

derived from a source vector x by the conversion func-
tion which minimizes the mean squared error between the
converted source and target vectors processed in training:

y =

I
∑

i=1

p(i|x) · (µy
i + Σyx

i Σxx−1
i (x − µx

i )) , (3)

where p(i|x) =
αiN(x|µx

i , Σxx
i )

I
∑

j=1

αjN(x|µx
j , Σxx

j )

and

Σi =

[

Σxx
i Σxy

i

Σyx
i Σyy

i

]

; µi =

[

µx
i

µ
y
i

]

.

3.2. From Time to Feature Space

As explained in Section 2.1, we consider the spectra de-
rived from pitch-synchronous time frames to have the
same number of spectral lines. In general, the dimension-
ality of these spectral vectors is too high (> 200) to be di-
rectly processed by the above training algorithms. This is
due to problems estimating the full covariance matrices.



In literature, we find several feature representations
which reduce the number of dimensions to between 15
and 40 features, e.g. line spectral frequencies [1] or mel
frequency cepstral coefficients (MFCC) [4]. A recently
proposed feature set is based on a spectral interpolation
by means of cubic splines whose interpolation points
are mel-frequency-distributed [7]. The authors stated
that this representation outperforms the MFCC approach.
Since our experiments confirmed this outcome, in the fol-
lowing, we will utilize the mel frequency spline interpo-
lation of the magnitude spectrum. Here, the phase spec-
trum is neglected.

3.3. From Feature to Time Space

In operation phase, the linear transformation described
in Eq. 3 produces a sequence of converted vectors. This
sequence can be transformed to the spectral domain by
reapplying cubic spline interpolation.

Computing the features from the complex-valued
spectra removed the phase information which is signifi-
cant for the perceptive sound quality, cf. above. A trick to
generate the output phase is to simply add the input phase
spectrum, as, often, phase manipulation deteriorates the
naturalness of the converted speech.

Once we have produced the output spectra, we want
to deal with the transformation to the time domain. Dur-
ing training, we were able to derive the mean fundamen-
tal frequency (f0) ratio by comparing the lengths of the
voiced time frames of source and target speaker. In op-
eration phase, we take the f0 trajectory of the source ut-
terance and divide it by this ratio obtaining a simple ap-
proximation of the target speaker’s f0 trajectory.

Then, we adapt the number of spectral lines accord-
ingly by again using cubic spline interpolation, cf. Sec-
tion 2.1. Finally, we apply frequency domain pitch-
synchronous overlap and add (FD-PSOLA) to return to
time space, taking into account that frames must be
skipped or repeated, respectively, in order to preserve the
speaking rate [8].

4. Experiments

4.1. The Experimental Corpus

The corpus utilized in this work contains several hundred
Spanish sentences uttered by a female and a male speaker.
The speech signals were recorded in an acoustically iso-
lated environment and sampled at a sample frequency of
16 kHz.

4.2. Objective Error Measures

In the literature dealing with voice conversion, several
objective error measures are used. They require reference
speech data of the target speaker which is aligned to the
source test utterances by dynamic time warping.

The most common measure is the relative spectral
distortion D which compares the distance between the
converted speech (represented by the vector sequence
x̃N

1 ) and the reference (yN
1 ) with that between source

compared vectors d(x, y)

Tamura et al. [9] spline features
√

E(x − y)

Kain and Macon [1] spline features E(x − y)

Sündermann et al. [5] magnitude spectra E(x − y)

Ye and Young [7] magnitude spectra E(ln x − ln y)

Table 1: Objective error measures: Vector distances.

(xN
1 ) and reference. From this general definition, one

has derived several sub-categories including measuring
distances between the feature vectors [9], the magnitude
spectra [5], or the log spectra [7]. These relative distor-
tions are 1.0 for a system which directly passes the source
speech to the output without converting it at all. In the
case of producing the perfect output, i.e. the reference
speech, they are 0. In addition, [1] have argued that a
trivial linear-transformation-based voice conversion sys-
tem could always predict the mean of the target vectors.
This leads to an expression for the spectral distortion with
the distance between reference speech and mean target
vectors as denominator.

Since the magnitude spectra as well as the spline in-
terpolation features depend on the signal loudness, the
spectral distortion varies depending on the signal level of
the compared vectors. To avoid this effect, we normal-
ize their energies. However, through this step, deviations
in low-energy regions are counted in the same way like
those in high energy regions. Therefore, finally, we apply
a weighted mean to compute the average spectral distor-
tion. The weights wn : n = 1, . . . , N are the normalized
geometric means of the compared vectors’ signal ener-
gies (E(x): signal energy of x; d(x, y): vector distance,
cf. Table 1):

D =

N
∑

n=1
wn(x̃N

1 , yN
1 )d( x̃n√

E(x̃n)
, yn√

E(yn)
)

N
∑

n=1
wn(xN

1 , yN
1 )d( xn√

E(xn)
, yn√

E(yn)
)

(4)

with wn(xN
1 , yN

1 ) =

√

E(xn)E(yn)
N
∑

ν=1

√

E(xν)E(yν)

.

4.3. Comparative Evaluation

In our experiments, we investigated the influence of the
amount of training data (one to 64 sentences) and that of
the number of GMM components (one to eight) on the
performance of the conventional training approach us-
ing text-dependent training data and that based on text-
independent data, cf. Figure 1. For testing, ten sentences
were used, which were, of course, distinct from the train-
ing material.

To assess the effects which are caused by the feature
representation, at the beginning, we measured the ini-
tial distortion which results from transforming the refer-
ence speech to feature space and back and then regarding
the result as being the converted speech (for our experi-
ments, we used 20 features), cf. Table 2. Although one



D Tamura Kain Sündermann Ye

initial distortion 0.13 0.02 0.12 0.20
text-dependent 0.68 0.39 0.57 0.49

text-independent 0.75 0.47 0.65 0.55

initial distortion 0.18 0.02 0.14 0.31
text-dependent 0.76 0.38 0.58 0.76

text-independent 0.87 0.49 0.74 0.92

Table 2: Comparative evaluation between voice conver-
sion using text-dependent and text-independent training
data. The table contains the best results of the respec-
tive technique i.e., 64 training sentences and eight GMM
components for text-dependent training data; two train-
ing sentences and one GMM component for the text-
independent case. Top: male-to-female; bottom: female-
to-male

would expect to obtain an initial distortion of zero, this
cannot even be achieved for the error criteria based on
feature vectors, as the multitude of executed spline inter-
polations, f0 adaption, Hamming windowing (as a part
of the FD-PSOLA technique) cause considerable distor-
tions, cf. Sections 3.2 and 3.3.

4.4. Interpretation

These initial experiments show that
• the results of the voice conversion technique using text-
dependent data are comparable with those reported in the
literature, cf. e.g. [1]. In other words, our baseline system
shows state-of-the-art performance.
• The relative deterioration by using text-independent
training data is around 14% for male-to-female conver-
sion and around 23% for female-to-male, cf. Table 2. Be-
sides, in Figure 1, we note that already for two training
sentences, the text-independent training technique pro-
duces a saturation effect; and using more than one GMM
component does not improve the performance at all. This
might be due to the fixed number of K = L = 8 source
and target classes for the k-means clustering. Neverthe-
less, as a starting point, these results are rather satisfac-
tory since, so far, we have used only a simple implemen-
tation which is to be optimized and developed further in
the future.
• The most distinctive error measure seems to be that
of [1]. It reports only two percent initial distortion, which
is rather closed to the expected zero distortion. Besides,
the relative differences between initial distortion and that
of the text-dependent training method and that between
both training methods are the highest in comparison with
the other criteria.

5. Conclusion
In this paper, an algorithm for voice conversion parame-
ter training which finds corresponding time frames within
text-independent training data is presented. It is tested
in comparison with the conventional method of using
equivalent training utterances. The outcomes show an
relative deterioration of around 14% for male-to-female

Figure 1: Dependency of the voice conversion perfor-
mance on the number of training sentences and that of the
GMM components. The figure shows results for male-to-
female conversion based on the error measure according
to [1]. For each set of training sentences, from the left to
the right, the number of GMM components is 1, 2, 4, 8.1

voice conversion and 23% for the other direction. These
initial results are satisfactory because of the importance
of voice conversion applications where text-dependent
training data is not available. The presented system is not
optimized yet and serves as a good starting point for in-
tensive investigations regarding its accuracy in the future.
1
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