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Abstract—In this paper, we analyse different techniques to
detect the number of clusters in a dataset, also know as cluster
validation techniques. We also propose a new algorithm based on
the combination of several validation indexes to simultaneously
validate several partitions of a dataset generated by different
clustering techniques and object distances. The existing valida-
tion techniques as well as the combination algorithm have been
tested on three data sets: a synthesized mixture of Gaussians
data set, the NCI60 microarray data set, and the Iris data set.
Evaluation results have shown the adequate performance of
the proposed approach, even if the input validity scores fail to
discover the true number of clusters.
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I. INTRODUCTION

Cluster analysis organises data by abstracting underlying

structure either as a grouping of individuals or as a hierarchy

of groups [1].

Commonly associated to the usage of cluster algorithms

is the problem of estimating the number of classes existing

in a dataset. Most clustering algorithms are parameterized

approaches, with the target number of clusters k as the most

frequent input parameter.

The question about the correct number of clusters in a

dataset is not only a topic of recent investigation: Already in

the 1970s, with the appearance of the classical clustering ap-

proaches, researchers like J. A. Hartigan (k-means) showed

strong consciousness about this problem and proposed some

metrics for automatically determining the value of k. The

general approach is to evaluate the quality of each k-cluster

solution provided by the clustering algorithm and select the

value of k that originates the optimum partition according

to a quality criterion. This particular field of cluster analysis

is commonly known as “cluster validation” or “cluster

validity”. Over the past decades, many approaches for cluster

validation have been proposed in parallel to the advances in

clustering techniques, such as the Krzanowski and Lai test,

the Davies Bouldin index, Silhouette, and more recently, the

Gap statistic. Many of them try to minimise/maximise the

intra- or inter-cluster dispersion.

Unfortunately, the performance of validation techniques

usually depends on the data set or the cluster algorithm used

to partition the data. In addition, the distance metric applied

prior to clustering has proven a relevant factor for the final

cluster solution and may also influence the cluster validity

success to determine the optimum number of clusters. In

a few cases, prior assumptions about the data set can be

adopted which enable the choice of the best fitting clustering

technique and distance model. However, unsupervised mod-

els are often applied to more complex, multi-dimensional

datasets for which little or no prior assumptions can be made.

In this paper, we propose a validity combination strat-

egy to predict the number of clusters in a data set with-

out adopting any prior assumptions about the clustering

technique or distance measure. Our approach to cluster

validation is to perform multiple simulations on a dataset

varying the distance and clustering technique as well as

the number of clusters k. Then, the different partitions

obtained from these simulations are evaluated in parallel by

several cluster validation criteria. A validation redundancy

is thereby achieved which can be exploited to measure the

agreement/consistency of the different scores at each value

k. The new technique described in this paper is based on

the calculation of quantile statistics of the validation curves,

as explained in the following sections.

The structure of this paper is as follows: In Section II,

we give an overview about validation indexes commonly

used in the literature. In Section III, we describe the new

combination approach. In Sections IV and V, the experi-

mental corpora and results are described. Finally, we draw

conclusions in Section VI.

II. CLUSTER VALIDATION METHODS

As outlined in Section I, the determination of the number

of clusters in a data set is a principal problem associated

with many clustering algorithms.

In the following, we denote C = {C1, · · · , Ck}, a cluster

partition composed of k clusters, and N , the total number of

objects in a data set. The cluster validation indexes applied

in our experiments are the following:

A. Hartigan

This metric was proposed by J. A. Hartigan for detecting

the optimum number of clusters k to be applied in the k-

means clustering algorithm [2]:



H(k) = γ(k)
W (k)−W (k + 1)

W (k + 1)
, γ(k) = N −k−1 (1)

denoting W (k) the intra-cluster dispersion, defined as the

total sum of square distances of the objects to their cluster

centroids. The parameter γ is introduced in order to avoid

an increasing monotony with increasing k. In this work, we

use a small modification to the Hartigan metric, by treating

the parameter W (k) as the average intra-cluster distance.

According to Hartigan, the optimum number of clusters

is the smallest k which produces H(k) ≤ η (typically

η = 10). However, in order to allow a better alignment

of the Hartigan index to other scores in the combination

approach, we have introduced a correction of the index:

Hc(k) = H(k − 1) and considered a modification of the

optimum criterion by maximising Hc(k). In other words,

the new criterion maximises the relative improvement at k
with respect to k−1, in terms of decreasing dispersion. This

allows for a direct application of the corrected index Hc(k)
in the combination approach without resorting to a previous

inversion of the scores.

B. Davies Bouldin Index

The Davies Bouldin index [3] was proposed to find

compact and well separated clusters. It is formulated as:

DB(k) =
1

k

k
∑

i=1

max
j 6=i

∆(Ci) + ∆(Cj)

δ(Ci, Cj)
(2)

where ∆(Ci) denotes the intra-cluster distance, calculated

as the average distance of all the cluster objects Ci to

the cluster medoid, whereas δ(Ci, Cj) denotes the distance

between the clusters Ci and Cj (distance between the cluster

medoids). The optimum number of clusters corresponds to

the minimum value of DB(k).

C. Krzanowski and Lai Index

This metric belongs to the so-called “elbow models” [4].

These approaches plot a certain quality function over all

possible values for k and detect the optimum as the point

where the plotted curves reach an elbow, i.e. the value from

which the curve considerably decreases or increases. The

Krzanowski and Lai index is defined as:

KL(k) =

∣
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Diffk = (k − 1)
2

m Wk−1 − k
2

m Wk (4)

The parameter m represents the feature dimensionality of

the input objects (number of attributes), and Wk is calculated

as the within-group dispersion matrix of the clustered data:

Wk =

k
∑

i=1

∑

xj∈Ci

(xj − ci)(xj − ci)
T (5)

In this case, xj represents an object assigned to the jth

cluster, and ci denotes the centroid or medoid of the ith

cluster. The optimum k corresponds to the maximum of

KL(k).

D. Silhouette

This method is based on the silhouette width, an indicator

for the quality of each object i [5]. The silhouette width is

defined as:

sil(xi) =
b(i)− a(i)

max(a(i), b(i))
(6)

where a(i) denotes the average distance of the object i
to all objects of the same cluster, and b(i) is the average

distance of the object i to the objects of the closest cluster.

Based on the object silhouettes, one can extend the

silhouette scores to validate each individual cluster using

the average of the cluster object silhouettes:

sil(Cj) =
1

|Cj |

∑

xi∈Cj

sil(xi) (7)

Finally, the silhouette score which validates the whole

partition of the data is obtained by averaging the cluster

silhouette widths:

sil(k) =
1

k

k
∑

r=1

sil(Cr) (8)

The optimum k maximises sil(k).

E. Gap Statistic

The idea behind the Gap statistic is to compare the

validation results of the given data set to an appropriate

reference data set drawn from an a-priory distribution [6].

Thereby, this formulation avoids the increasing or decreasing

monotony of other validation scores with increasing number

of clusters.

First, the intra-cluster distance is averaged over the k
clusters:

Wk =

k
∑

r=1

1

2nr

∑

i,j∈Cr

D(i, j) (9)

where nr denotes the number of elements of the cluster

r. The Gap statistic is defined as:

Gap(k) = E(log(Wk))− log(Wk) (10)

where E(log(Wk)) is the expected logarithm of the

average intra-cluster distance. In practice, this expectation



is computed through a Monte-Carlo simulation on a number

of sample realizations of a uniform distribution B1.

Gap(k) =
1

B

∑

b

(log(Wkb))− log(Wk) (11)

where Wkb denotes the average intra-cluster distance of

the bth realization of the reference distribution using k
clusters. The optimum number of clusters is the smallest

value k such that Gap(k) ≥ Gap(k + 1)− sk+1, where sk

is a factor that takes into account the standard deviation of

the Monte-Carlo replicates Wkb.

III. COMBINATION APPROACH BASED ON QUANTILES

The proposed approach is based on a combination of

validation results using the validity indexes from Section

II. First, multiple clustering partitions of a data set have

been generated varying the clustering method and distance

functions used to cluster the data objects.

• Clustering techniques: In this work, we used four

clustering algorithms: the partitioning around medoids

(pam) algorithm [7], and the hierarchical complete,

centroid and average linkage methods [8].

• Distance functions: The aforementioned algorithms

have been applied to two different distance metrics

representing the dissimilarity between dataset objects.

In this work, we used Euclidean and cosine distances,

respectively.

The different clusterings of the dataset have been in turn

evaluated using the validity indexes2 from Section II. In

the following, we refer to the validation outcome obtained

with each triple (clustering, distance, validation index) as

“validation curve”. Note that Davies Bouldin scores have

been inverted before applying the combination approach so

that the optimum can be generalized to the maximum scores

and that the Gap statistic has been modified as:

Gap′(k) = Gap(k)−Gap(k + 1) + sk+1 (12)

The proposed method is based on the observation that,

although the validation curves may fail to determine the

optimum k as a global or local maximum, the correct k is

consistently located among the top scores in most cases. This

fact motivated the combination of validation scores based on

p quantiles.

The p quantile of a random variable X is defined as such

value x which is only exceeded by a proportion 1 − p of

the variable samples [9]. In mathematical terms, if denoting

1Note that the reference data drawn from this uniform distribution
consists of a number N of objects identical to the data set, with identical
number of features m. The values of each feature in each object are assigned
randomly in the original feature range.

2Note: while Hartigan, Krzanowski and Lai, Davies Bouldin, and Sil-
houette have been used in combination with the four clustering algorithms,
the Gap statistic has been only applied to the pam and average linkage
algorithms.
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Figure 1. Illustrative example of a p quantile: 0.5 and 0.9 quantiles of
variable samples with normal distribution.
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Figure 2. Application of quantiles to a validity curve (Silhouette index,
hierarchical average and Euclidean distance). “Top scores” can be identified
as such scores that exceed the p quantile level. In this example, p = 0.90.

the probability density function of the random variable X
as pdf(X), the p quantile can be defined as:

Q(X, p) = x :

∫ x

−∞

pdf(X) = p (13)

Figure 1 illustrates this concept for a hypothetic random

variable with a normal distribution.

For the application of quantiles to the detection of the

number of clusters, the different validation curves are treated

as if drawn from a certain probabilistic process. The quantile

function is then applied to each single curve, denoted Vi.

The p quantile Q(Vi, p) returns the validation score Vip

only exceeded by the 1 − p proportion of k values in the

considered range. This fact is exemplified in Figure 2 for

the validation curve obtained by applying the Silhouette

index to validate the partitions of the mixture of Gaussians

data set using the hierarchical average linkage algorithm and

Euclidean distance.

A basic approach to measuring the consensus of validity

scores is to directly apply p quantiles to the set of validation

curves, V , and counting the number of times that each

value k outperforms the score Q(Vi, p). We call this method

Quantile Validation (Qvalid(V , p)).

However, the Qvalid results show a certain dependency

on the quantile probability parameter p. On the one hand,

using low p values often leads to maximum scores at the



Algorithm 1 Quantile validation: Qvalid(V , p)

Input V : set of validation curves, p: quantile parameter

for k=2 to kmax do

Qvalid[k] = 0

for all Vi do

if Vi[k] ≥ quantile(p, Vi) then

Qvalid[k]←Qvalid[k] + 1
end if

end for

end for
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Figure 3. Mixture of seven Gaussians data set

optimum kopt, but these maxima are not unique, given the

high proportion of samples which often exceed the levels

Q(Vi, p) for low ps. On the other hand, if a high p value is

selected, a maximum peak can be clearly discerned, but it

is often misplaced to k 6= kopt. This happens, in particular,

if an increasing or decreasing monotony with k is observed

in some validity outcomes. These monotonic effects may be

captured in this Qvalid result in the form of maximum peaks

at low or high ks.

For these reasons, we propose a “supra-consensus” func-

tion wich aims at combining the set of quantile validation

results obtained with different p values. The algorithm,

called quantile detection, is performed in three steps: First,

the quantile validation is applied to the input validation

curves with nine different p values: p ∈ [0.1, 0.2, . . . , 0.9].
The Qvalid results are then modified by casting out (setting

to 0) a set ks whose scores are identified as irrelevant

according to the information of 0.9 quantiles. Finally, the

number of maxima at each k across the modified Qvalid

scores is returned.

IV. EXPERIMENTAL CORPORA

The validity indexes from Section II as well as the

combination approach have been evaluated on a synthetic

dataset (mixture of Gaussians) and two real data sets.

Mixture of seven Gaussians: The first data set (Figure

3) is a mixture of seven Gaussians in two dimensions. A

cluster hierarchy can be observed in the data plot, with three

well differentiated and seven less separable clusters.

NCI60 data set: The second data set used in our

experiments in the NCI60 dataset [10], publicly available at

Algorithm 2 Quantile detection: Qdetect(V)

Input V : set of validation curves

for p=0.1 to 0.9 do

QDp[2, . . . , kmax] = Qvalid(V, p)

QDp[1] = 0

QDp[kmax + 1] = 0

end for

for all k, p do

if QD0.9[k] < 0.5 ·max
k′

(QD0.9[k
′]) then

QDp[k] = 0

end if

end for

for k=2 to kmax do

Qdetect[k] = 0

for all p do

if QDp[k] = max
k′

(QDp[k
′]) or

QDp[k − 1] < QDp[k] > QDp[k + 1] then

Qdetect[k]←Qdetect[k] + 1
end if

end for

end for

[11]. It consists of gene expression data for 60 cell lines

derived from different organs and tissues. The data is a

1375x60 matrix where each row represents a gene and each

column a cell line related to a human tumour. There are 9

known tumour types: leukemia, colon, breast, prostate, lung,

ovarian, renal, CNS, and melanoma, and one unknown.

Iris data set: Finally, we have tested the algorithms on

the Iris data set [12], available at the UCI machine learning

repository [13]. The data set contains 150 instances with

four attributes related to three classes of iris plants (Iris

Setosa, Iris Versiculor, Iris Virginica). Two of the classes are

linearly separable while one of them is not linearly separable

from the other two. Also, a z-score normalisation has been

performed on each Iris attribute, a, by using the mean, µ(a)
and standard deviation, σ(a): ā = (a− ν(a))/(σ(a)).

V. RESULTS

This section reports on the validation scores obtained

with the validity indexes described in Section II and the

combination approach. We have used a maximum number

of clusters kmax = 40.

Validation results obtained on the mixture of Gaussians,

NCI60, and Iris data sets are shown in Tables 1, 2 and

3, respectively. The first rows in these tables show an

excerpt of the validation curves obtained by applying the

validation indexes (Section II) to different partitions of the

data set: a) using the partitioning around medoids (pam) with

cosine distance, b) pam algorithm with Euclidean distance,

c) hierarchical average linkage with cosine distance, and d)

hierarchical average with Euclidean distance. The second



Table I
VALIDATION ON THE SEVEN GAUSSIANS DATA SET. The first 20 rows show the validation results obtained with the corrected Hartigan, Krzanowski and
Lai, Davies Bouldin, Silhouette and Gap statistics, using the pam and hierarchical average linkage with cosine and Euclidean distance. The next 9 rows

show the results of the Qvalid function for [p = 0.1, 0.2, . . . , 0.9]. The second last row shows the counts of maxima across the previous 9 rows.
Finally, the last row shows the combined results obtained with the Qdetect algorithm.

Validation Clustering, k

Index Distance 2 3 4 5 6 7 8 9 10

Hc(k) pam, cos 2422.4** 197.4 4441.9* 1085.3 567.1 556.9 1687.4 524.8 335.4
pam, Euc -1459.1 1010.5 185.6 406.6 265.7 53.1 554.6 87.0 37.6
havg, cos 2707.1 3222.8* 581.0 1376.6*** 33.8 976.9 22.7 1670.8** 9.9
havg, Euc -1529.3 1897.2* 184.1 388.6*** 346.3 526.9** 4.9 3.5 4.9

KL(k) pam, cos 1.154 0.703 4.510 0.861 1.092 0.535 4.004 0.542 3.451
pam, Euc 0.212 13.773** 0.694 0.748 3.175 0.207 12.875*** 0.493 1.262
havg, cos 2.281 4.396*** 0.534 0.496 5.781** 0.460 0.756 0.864 1.350
havg, Euc 0.412 52.829* 0.336 0.842 0.770 2.667 0.976 1.054 0.989

DB(k) pam, cos 0.896 0.908 0.708* 1.671 2.028 1.508 0.880** 1.327 1.615
pam, Euc 0.875 0.484* 0.809 0.855 0.667** 0.859 0.791*** 0.945 1.123
havg, cos 0.717 0.445* 0.654 0.784 0.810 0.791** 0.852 0.944 0.982
havg, Euc 0.728 0.484* 0.669 0.768 0.684 0.602 0.593** 0.608 0.609

Sil(k) pam, cos 0.707 0.590 0.769* 0.707 0.717 0.737 0.738** 0.720 0.702
pam, Euc 0.530 0.684* 0.546 0.487 0.550*** 0.538 0.571** 0.524 0.474
havg, cos 0.751 0.872* 0.793 0.742 0.668 0.706*** 0.689 0.716** 0.677
havg, Euc 0.437 0.684* 0.584 0.519 0.570 0.610** 0.583 0.545 0.512

Gap′(k) pam, cos 0.578* -0.713 -0.059 0.204** 0.193 -0.258 -0.101 0.033 0.038
pam, Euc -0.275 0.057** -0.015 -0.010 0.106* -0.195 0.042*** 0.041 0.049
havg, cos -0.404 0.257*** 0.074 0.478* -0.036 0.336** -0.401 0.260 0.283
havg, Euc -0.548 0.148* -0.056 -0.075 -0.151 0.083** 0.082 0.066 0.080***

Qvalid(p = 0.1) 29 32 35 32 35 35 33 35 36
Qvalid(p = 0.2) 25 32 29 28 32 32 33 33 33
Qvalid(p = 0.3) 23 31 27 26 28 29 27 28 28
Qvalid(p = 0.4) 19 30 25 23 25 28 22 26 24
Qvalid(p = 0.5) 19 30 24 21 25 27 22 23 20
Qvalid(p = 0.6) 18 28 23 20 23 26 21 21 18
Qvalid(p = 0.7) 17 27 22 20 22 24 18 21 16
Qvalid(p = 0.8) 11 27 21 17 18 22 16 20 8
Qvalid(p = 0.9) 9 21 13 10 12 13 8 6 3

Qvalid max. counts 0 8* 1 0 0 7** 1 5 2

Qdetect 0 8** 1 0 2 9* 0 0 0

last row shows the counts of maxima across the set of

Qvalid results for p = [0.1, 0.2, · · · , 0.9], as explained in

Section III. The last row shows scores obtained with the

Qdetect algorithm. For brevity, we only show an excerpt of

validation scores at some relevant k values from the analysed

range (k = [2, 40]). In order to retain significant information

despite the omitted results, relevant maxima (minima in the

case of Davies Bouldin scores) considering the full analysed

range have been marked using asterisk symbols: (*) stands

for first maxima, versus (***) for third maxima3. Also, the

column corresponding to the correct number of clusters has

been highlighted in grey background color.

3We refer to the global maxima of the validity function as first maxima,
while the second and third local maxima are refered to as the second/third
maxima. Note that a local maximum is located at k if the score is higher
than the values of k + 1 and k − 1. For edge values (k = 2, k = 40),
a local maximum is placed if these scores are greater than their adjacent
in-range neighbors’ scores.

A. Results on the mixture of seven Gaussians data set

Validation results on the mixture of seven Gaussians

data set are shown in Table 1. The Qvalid results for

p = [0.1, 0.2, · · · , 0.9] are also detailed in Table 1. Note

that some columns in grey fonts indicate the set of k
values identified as irrelevant and set to zero by the Qdetect

algorithm, as explained in Section III.

As already discussed in Section IV, the mixture of seven

Gaussians data set comprises a hierarchy of three well

separable clusters and seven less separable clusters. As can

be observed, many validation curves are able to detect the

three top clusters but fail to detect the seven Gaussians.

In some cases, validation scores reflect the hierarchy by

placing first maxima at k = 3 and other maxima at k = 7
(Hartigan, Silhouette, and Gap statistic using hierarchical

average clustering and Euclidean distance; Davies Bouldin

with hierarchical average clustering and cosine distance).

The Silhouette index produces a third maximum at k = 7



Table II
VALIDATION RESULTS ON THE NCI60 DATA SET.

Validation Clustering, k
Index Distance 7 8 9 10

Hc(k) pam, cos 1.22 2.18 2.15 0.32
pam, Euc -0.21 0.75 0.92*** 0.13
havg, cos 1.84 1.81 0.67 0.09
havg, Euc 0.15 0.01 2.99* 0.06

Sil(k) pam, cos 0.191 0.205 0.215 0.216
pam, euc 0.091 0.093 0.104 0.110
havg, cos 0.134 0.158 0.173 0.172
havg, Euc 0.092 0.092 0.135** 0.134

Gap′(k) pam, cos -3.5e-02 -3.5e-02 -6.4e-04 -2.8e-02
pam, Euc -0.010 -0.014 0.001 0.0007
havg, cos -0.027 -0.004 0.006** -0.113
havg, Euc 0.004** -0.051 0.002 -0.005

Qvalid max. counts 0 0 9* 0

Qdetect 0 0 9* 0

if hierarchical average clustering is applied in combination

with cosine distance.

The counts of maxima across Qvalid also reflects the

cluster hierarchy although this strategy results in a first

maximum at k = 3. A second maximum is obtained at

k = 7, matching the best validation curves. Note, however,

that this maximum is not unique, but other candidates are

found at k = 18, k = 23, and k = 32.

Unlike the aforementioned results, the Qdetect algorithm

detects the correct number of Gaussians as a first, unique

maximum at k = 7. k = 3 is assigned a second maximum.

B. Results on the NCI60 data set

Table II shows validation results on the NCI60 data set.

Note that validation curves obtained with the Davies Bouldin

and Krzanowski and Lai metrics have not been included. The

reason are missing values in the data set.

On this data set, only the (corrected) Hartigan index is

able to detect the correct number of classes (9) in one

of the validation curves. This occurs when hierarchical

average clustering is used in combination with the Euclidean

distance. Three other validation curves place local maxima

at k = 9: second maxima are found at k = 9 by Silhouette

and Gap statistics with hierarchical average clustering, and

a third maximum is placed by Hartigan in combination with

the pam algorithm and Euclidean distance.

Regarding our combination approach, both strategies de-

termine the correct number of classes at k = 9.

C. Results on the Iris data set

Table III shows the validation results on the Iris data set.

As explained in Section IV, this data set is composed of two

linearly separable iris types and a third class not linearly

separable from the other two. Therefore, most validation

curves fail to detect the number of clusters. Validation

maxima are often misplaced to k = 2. Only Hartigan and

Table III
VALIDATION RESULTS ON THE IRIS DATA SET.

Validation Clustering, k
Index Distance 2 3 4 5

Hc(k) pam, cos 184.397* 143.755 65.769 9.514
pam, Euc -53.932 39.640* 13.550 12.844
havg, cos 175.052* 143.247 4.289 74.159**
havg, Euc -53.932 6.979 1.017 27.146**

KL(k) pam, cos 67.827* 0.067 5.409 1.322
pam, Euc 5.030 4.090 0.714 5.853***
havg, cos 4.863*** 2.952 13.340* 0.026
havg, Euc 11.051 0.691 0.513 14.283

DB(k) pam, cos 0.621 0.878 1.230 1.189
pam, Euc 0.672 0.973 1.133 1.104
havg, cos 0.617* 0.902 0.911 1.080
havg, Euc 0.672 0.625 0.547* 0.680

Sil(k) pam, cos 0.737* 0.669 0.646 0.559
pam, Euc 0.581* 0.447 0.386 0.335
havg, cos 0.729 0.721 0.662 0.641
havg, Euc 0.581* 0.480 0.406 0.374

Gap′(k) pam, cos -0.420 -0.149 0.097** 0.025
pam, Euc -0.121 -0.004 0.003 0.059*
havg, cos -0.430 0.101** -0.1643 0.0008
havg, Euc 0.047 0.109* -0.093 0.063

Qvalid max. counts 2 7** 1 6

Qdetect 3 8* 1 0

Gap statistic, in combination with Euclidean distance, and

pam and hierarchical average algorithms, respectively, are

able to identify the correct number of classes. Also the

Gap statistic with hierarchical average clustering and cosine

distance places a second maximum at k = 3.

These validation outcomes have been slightly improved by

counting the number of maxima across the Qvalid results

(a second maximum is placed at kopt = 3). Finally, as it

happened with the previous data sets, the Qdetect algorithm

is able to identify the correct number of clusters on the Iris

data set.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have analysed different existing ap-

proaches for discovering the number of clusters in a

dataset. In particular, the Hartigan index, Davies Bouldin,

Krzanowski and Lai test, the Silhouette width and the Gap

statistic have been applied to three data sets: a mixture of

seven Gaussians, the NCI60 cancer data set, and the Iris data

set.

Motivated by the hypothesis that the validation results

may depend on clustering technique and distance model,

we have proposed a new algorithm, called Qdetect. Our

approach is based on a combination of multiple validity

outcomes using quantiles.

Experimental results have evidenced that the combined

solution (Qdetect algorithm) is able to identify the correct

number of clusters although many of the individual valida-

tion techniques on all three databases fail.



Future work is to investigate the robustness of Qdetect on

other databases (particularly with larger kopt).
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