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Abstract

The localization of speech recognition for large-scale spoken
dialog systems can be a tremendous exercise. Usually, all in-
volved grammars have to be translated by a language expert,
and new data has to be collected, transcribed, and annotated
for statistical utterance classifiers resulting in a time-consuming
and expensive undertaking. Often though, a vast number of
transcribed and annotated utterances exists for the sourcelan-
guage. In this paper, we propose to use such data and translate
it into the target language using machine translation. The trans-
lated utterances and their associated (original) annotations are
then used to train statistical grammars for all contexts of the
target system. As an example, we localize an English spoken
dialog system for Internet troubleshooting to Spanish by trans-
lating more than 4 million source utterances without any human
intervention. In an application of the localized system to more
than 10,000 utterances collected on a similar Spanish Internet
troubleshooting system, we show that the overall accuracy was
only 5.7% worse than that of the English source system.
Index Terms: spoken dialog systems, machine translation, lo-
calization

1. Introduction
Nowadays’ spoken dialog systems can be very complex ap-
plications comprising thousands of activities, grammars,and
prompts. Years of developing work can be spent to design these
systems and much effort undertaken to tune involved speech
recognition grammars to achieve highest possible performance
crucial for user acceptance and effectiveness of the applications.
Such tuning can require processing of huge numbers of calls to
analyze caller behavior in every single context of the system,
building of recognition grammars to effectively interpretcaller
utterances, and designing the application to respond appropri-
ately at every context.

E.g., to tune a spoken dialog system for Internet, cable
TV, and Voice-over-IP troubleshooting, more than two million
speech utterances were collected, transcribed, annotated, and
used for training statistical grammars, boosting overall accu-
racy from an initial 78.0% to 90.5% accuracy [1]. Although
transcription and annotation of such amounts of data is partially
automatable, it can still keep several people busy for months.
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While transcription is a relatively straightforward exercise, se-
mantic annotation, i.e. the mapping of a lexical content to one of
a number of semantic symptoms, requires knowledge about the
application. Not only must annotators understand what a caller
utterance means in response to the system prompt in the respec-
tive context, but there are several aspects to semantic annotation
making it a non-trivial undertaking, such as

• Utterances may have no representation in the given set of
symptoms suggesting that they are out-of-scope for the
grammar.

• When the ratio of out-of-scope utterances grows and
well-distinguishable patterns manifest themselves, anno-
tators are to suggest the introduction of new symptoms
to the system designer.

• Utterances may be ambiguous, vague, too specific, or
carry content belonging to multiple symptoms making it
hard for the annotator to make a decision.

• Annotations have to follow a number of quality assur-
ance criteria to produce powerful and exact results in-
cluding criteria for completeness, consistency, congru-
ence, correlation, confusion, coverage, and corpus size,
also referred to as C7 [2].

These issues emphasize that thorough speech recognition tuning
in spoken dialog systems can be a very expensive task. Large-
scale spoken dialog systems as introduced above are mostly
used in relatively big enterprises trying to optimize theircus-
tomer care telephone portals. Many of these companies operate
internationally producing a need to localize their phone services
including involved spoken dialog systems. Localization ofa
dialog system entails translating it from one language to an-
other [3]. The high cost of producing and maintaining systems
in different languages obviously increases as more languages
are considered. Not only the cost, but also the time to gener-
ate speech recognition grammars from scratch is a crucial issue
when localizing a given spoken dialog system [4].

In this paper, we propose to use transcribed and annotated
data available for the original (source) language of the spoken
dialog system, then apply machine translation to the given tran-
scriptions keeping the semantic annotations, and finally train-
ing statistical grammars based on the translated utterances and
the original annotations. As a proof of concept, we used all
available data collected for an English Internet troubleshooting
application comprising more than 4 million utterances to build



Spanish grammars for every recognition context of the appli-
cation. Then we collected, transcribed, and annotated 951 full
calls (11470 utterances) of a Spanish Internet troubleshooting
application. Testing the utterances against the translated sta-
tistical grammars for the given recognition contexts resulted in
an average accuracy of 85.0%. As a comparison, the original
English system performed at 90.7%.

2. Some Theoretical Background
The subject discussed in this paper, the localization of speech
recognition based on machine translation, is related to several
areas of speech processing including automatic speech recogni-
tion, machine translation, and speech translation. This section
is to give a very high-level overview on the main probabilistic
apparatus of these related disciplines to indicate how theyare
mathematically interconnected.

2.1. Speech Recognition (Speech F to Text f )

In the digital age, the usual input to speech recognition is
a pulse-code modulated (or similarly coded) chunk of audio
which most often is transformed to a sequence of feature vec-
tors F . Given this vector sequence, the non-trivial problem is
to find the most probable sequence of words

f = arg max
ϕ

p(ϕ|F ) (1)

whereϕ iterates over the set of all possible word sequences.
Bayes’ theorem allows to rewrite this formula into

f = arg max
ϕ

p(ϕ)p(F |ϕ). (2)

Here, p(ϕ) is the probability of the word sequenceϕ, com-
monly referred to as language model, whereasp(F |ϕ) is the
conditional probablity that the feature vector sequenceF was
produced by the word sequenceϕ, referred to as acoustic
model [5].

2.2. Machine Translation (Text f to Text e)

Machine translation can be described similarly by searching for
that word sequence of the target languagee being the most
likely translation of the source word sequencef :

e = arg max
ε

p(ε|f) (3)

where ε iterates over the set of all possible target word se-
quences. We can apply Bayes’ theorem producing

e = arg max
ε

p(ε)p(f |ε) (4)

with the target language modelp(ε) and the so-called trans-
lation modelp(f |ε) which expresses the probability that the
source (or foreign) language word sequencef is the translation
of the target (or native) language word sequenceε. This some-
what counter-intuitive splitting of the problem into two sub-
problems where the second one (the translation model) looks
as hard as the original problem is motivated by the fact that
the first subproblem (the language model) has a significant im-
pact for the success of the search expressed by Equation 4 and
can be relatively straightforwardly be estimated based on large
amounts of target language data [6].

2.3. Speech Translation (Speech F to Text e)

The coupling of automatic speech recognition and machine
translation—actually out-of-scope of the present paper but in-
cluded in this section for the sake of completeness—allows for
directly translating spoken utterances into another language [7].
Here, we search for the most probable target language word se-
quencee given an acoustic source vector sequenceF as

e = arg max
ε

p(ε|F )

= arg max
ε

p(ε)p(F |ε)

= arg max
ε

p(ε)
X

ϕ

p(F |ϕ, ε)p(ϕ|ε)

∼= arg max
ε

p(ε)
X

ϕ

p(F |ϕ)p(ϕ|ε). (5)

The last step’s approximation assumes that the acoustic realiza-
tion of an utterance in a language only depends on the underly-
ing word sequence of the same language and is independent of
its translation into another language. Here, we find target lan-
guage model, source acoustic model, and translation model in
combination.

2.4. Speech Recognition Localization (Speech E to Text e)

Now, we want to localize speech recognition to another (a tar-
get) language, i.e., we want to transcribe the feature sequence
E to a word stringe as per Equation 2:

e = arg max
ε

p(E|ε)p(ε). (6)

Mostly, in commercial applications, the acoustic modelp(E|ε)
is provided by the speech recognizer’s manufacturer whereas
the target language model (in spoken dialog systems aka gram-
mars) will most often be context- and application-dependent,
i.e., it has to be rebuilt. According to Section 1, we proposeto
apply knowledge we have from the source language as can be
expressed by extending Equation 6 as follows:

e = arg max
ε

p(E|ε)
X

ϕ

p(ϕ)p(ε|ϕ). (7)

This formulation leaves us with the translation modelp(ε|ϕ)
implemented in a machine translation environment as discussed
in Section 2.2 as well as with the source language modelp(ϕ)
whose approximation produces no additional cost in the present
localization scenario due to the large set of source utterances
available.

3. The Source Data
As mentioned in Section 1, as an example case, we used source
data collected in the scope of a large-scale English dialog sys-
tem for broadband Internet troubleshooting as described infur-
ther detail in [8]. Over a time span of more than three years,
dozens of millions of calls were processed by this system. On
a subset of these calls, utterances were captured, transcribed,
and annotated according to their semantic meaning. Table 1
gives an overview about the amount of involved data listing the
number of calls with transcribed utterances, the number of tran-
scribed and annotated utterances, activities, and grammars. Due
to a continuous improvement cycle applied to the example ap-
plication, several existing grammars were regularly updated by



Table 1:Overview on the English source data.

calls 1,159,940
transcribed utterances 4,293,898

annotated utterances 3,846,050 (89.6%)
activities 0,002,332

grammars 0,000,253
root grammars 0,000,134

optimized statistical language models and classifiers [1].Con-
sequently, several versions of grammars in the same recognition
context were used over the time of the data collection. Sincefor
the purpose of the present exercise all the data collected insuch
contexts is to be used independently of the actual grammar ver-
sion active at the time of the utterance capture, we do not dis-
tinguish between contexts originating from the same original or
root grammar. Also the number of root grammars is given in
Table 1.

Figure 1 shows the distribution of these utterances over the
mentioned time period indicating that the capture volume was
ever-increasing since the start of the project.

Figure 1:Utterance volume per month.

4. The Experiment
4.1. Translation

All transcribed utterances of Table 1 were translated from En-
glish into Spanish using a commercial statistical machine trans-
lation software. This was done completely unsupervised. No
corrections of the output or any tuning of the machine translator
was performed.

4.2. Training

For all distinct root grammars of Table 1, the respective trans-
lated Spanish utterances and their original semantic annotations
were used to train a statistical language model and a statistical
classifier using standard settings for the involved parameters,
since no development data was available1. These settings are
given in Table 2. Figure 2 shows the (Zipf-like) distribution

1Development data would have to be based on Spanish speech data
since language model and classifier have to be applied to a speech rec-
ognizer in the target language.

Table 2:Training settings.

language model trigram + smoothing
classifier naı̈ve Bayes + boosting

language/acoustic model tradeoff0.8
training accuracy cutoff 99%

acoustic rejection threshold 5%
semantic rejection threshold 0%

Table 3:Overview on the Spanish testing data.

calls 00,951
transcribed utterances 11,470

annotated utterances 11,470 (100.0%)
activities 00,144

grammars 00,017

of the number of utterances for each of the grammars in de-
scending order showing that there are grammars exceeding one
million utterances (a typical yes/no context) as well as numer-
ous grammars facing data sparseness (22 grammars feature less
than 100 training utterances).

4.3. Test

To test (a subset of) the automatically translated grammars, we
collected, transcribed, and annotated a limited number of utter-
ances from a Spanish version of a similar broadband Internet
troubleshooting dialog system. The characteristics of this data
are shown in Table 3. Figure 2 indicates the grammars found in
the test data as white bullets showing that they are distributed
among different magnitutes of amounts of available training
data.

Now, a batch experiment was executed performing speech
recognition and classification on the complete set of collected
utterances using the automatically translated grammars intheir
respective contexts. For each of the 11,470 utterances, theclas-
sification result was now compared to the semantic annotation
of the same utterance. In the following, we refer to accuracyas
the number of acoustic events where classification result and an-
notation match divided by the total number of acoustic events.
These events include out-of-scope utterances as well as noise,

Figure 2: Number of utterances per root grammar in order of
descending frequency.



background speech, etc.
Overall accuracy for the entire test set was at 85.0% which

is deemed very high compared to the performance of most
boot-strapped dialog systems based on hand-crafted grammars.
Those systems often perform at less than 80% accuracy; an
example is given in Section 1. To have a more reliable stan-
dard of comparison, we looked at the performance of the En-
glish source dialog system optimized on performance for sev-
eral years and found that the latest available system version per-
formed at 90.7% (measured on 930 full calls, 11274 completely
annotated utterances).

5. Conclusion
We have shown that localizing speech recognition using ma-
chine translation can be straightforward and cheap when large
amounts of transcribed and annotated data of the source lan-
guage is available. Testing an example implementation of the
proposed methodology indicated that this approach outperforms
manual boot-strapping but does not achieve the same accuracy
like the original (source language) dialog system. The reason
for the performance loss can be explained by the weakness of
either of the factors in Equation 7:

• The target acoustic modelp(E|ε) is weak: In our ex-
periment, we used an out-dated Spanish speech recog-
nizer whose acoustic models obviously did not achieve
the same performance like its English couterparts. E.g.,
in yes/no (sı́/no) contexts, we saw a significantly higher
portion of false accepts and rejects than in equivalent En-
glish contexts clearly independent of any linguistic fac-
tors.

• The translation modelp(ε|ϕ) is weak: Statistical trans-
lation not only produces a lot of commonly known arti-
facts, but there are cases where even a human translator
would fail: A grammar is normally designed based on
utterances a caller says in response to a system prompt
restricting the caller’s language. For instance, a Spanish
prompt may say

“cuando esté desconectado, digacontinúe”

translated from the English prompt

“when it’s unplugged, saycontinue”.

Hence, most of the English reponses will read “con-
tinue” which a machine as well as a human being most
likely would translate into Spanish as “continuar” in-
stead of the prompt-dependent correct “continúe”. So,
to achieve a higher accuracy of the translation hypothe-
ses, they could be rescored taking the respective system
prompt and other application-dependent information into
consideration.

Furthermore, as mentioned in Section 4.1, no development data
was available for this experiment since this would have re-
quired a (minimal) portion of collected target language utter-
ances, their transcriptions and annotations. Such data maybe
available once the first version of the target system goes into
production and can be used to tune language models and classi-
fiers.
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