
Minimally Invasive Surgery for Spoken Dialog Systems

David Suendermann, Jackson Liscombe, Roberto Pieraccini

SpeechCycle Labs, New York, USA
{david, jackson, roberto}@speechcycle.com

Excerpt

We demonstrate three techniques (Escalator, Engager, and Ev-
erywhereContender) designed to optimize performance of com-
mercial spoken dialog systems. These techniques have in com-
mon that they produce very small or no negative performance
impact even during a potential experimental phase. This is be-
cause they can either be applied offline to data collected on a de-
ployed system, or they can be incorporated conservatively such
that only a low percentage of calls will get affected until the
optimal strategy becomes apparent.

Index Terms: spoken dialog systems, performance optimiza-
tion, minimal invasion

1. Entrée

The main argument for using commercial spoken dialog sys-
tems is to replace the human agent role in a telephone con-
versation in order to save costs [1]. Other arguments such as
consistency of performance or ease of scalability can also be
mapped to cost savings. This is since call center agents can be
extensively, consistently, and persistently trained (which is ex-
pensive), and a good number of agents could be kept on-call
to account for unexpected peek situations like during outages
(which is also expensive).

When spoken dialog systems provide such multi-fashioned
savings, can we quantify them? And if so, what can we do to
optimize these savings?

Every successfully automated call prevented a human agent
to handle the same call, so, there is a (potentially call-type-
dependent) saving amount associated with this call. This
amount WA can be estimated based on statistics drawn from
call center transactions. On the other hand, automated calls pro-
duce costs such as hosting, licensing, or telephony fees which
depend on the duration of the call T . The per-time-unit cost
WT can be calculated considering the former (and other) fac-
tors. Formally, the savings for a call are

S = WAA − WT T . (1)

Here, the flag A ∈ {0, 1} determines whether the call was
automated or not. For the sake of simplicity, we regard WA

and WT as call-independent constants in the following, so, for
a set of calls 1, . . . , N with the respective automation flags
A1, . . . , AN and the durations T1, . . . , TN , we can estimate the

average savings as

S̄ =
1

N

N
X

n=1

WAAn − WT Tn . (2)

Any optimization technique we implement may have an impact
on the individual calls’ automation flags or durations, so, in fact,
they are variables depending on the system in use. Without loss
of generality, the system in use can be described by a system
parameter vector ξ describing one particular system out of the
set of all possible systems Ξ. Now, to optimize a spoken dia-

log system is to use that parameter vector ξ̂ ∈ Ξ yielding the
maximum average savings

ξ̂ = arg max
ξ∈Ξ

1

N

N
X

n=1

WAAn(ξ) − WT Tn(ξ)

= arg max
ξ∈Ξ

N
X

n=1

TAAn(ξ) − Tn(ξ) (3)

with TA = WA

WT
, a parameter describing the trade-off between

savings induced by automation and costs induced by duration.
Its unit is in time domain, and it can be interpreted as the du-
ration of an automated call for which savings and costs are en
par. As example, let us consider that a human operator costs
12.50 US$ for successfully handling a certain type of call. Let
us further assume the software-as-a-service vendor of the spo-
ken dialog system charges 15 US cents per minute for an auto-
mated call of the same type. We calculate TA = 5, 000s for this
scenario.

Returning to the idea of a reward function, Equation 3
demonstrates that the reward can also be expressed in terms of
agent time saved by the application:

R = TAA − T. (4)

In contrast to Equation 1, this representation avoids speaking
in currency units, unbecoming for scientific publications in the
authors’ opinion.

This paper focuses on the optimization of commercial spo-
ken dialog systems based on the above promoted notion of re-
ward function. The fact that we primarily look at commercial
systems severely constrains the way such optimization can be
achieved. This is because the stability of customer-facing pro-
duction systems is first priority. Systems taking traffic must be



guaranteed to perform at a certain minimum performance level.
Any applied changes should be guaranteed to boost or only min-
imally hurt performance.

To that effect, two of the optimization strategies covered
below (Escalator in Section 2 and Engager in Section 3) are ap-
plied offline to a formerly recorded set of calls. This is possible,
as the impact these strategies would have had if they would have
taken the same life calls can be predicted based on certain as-
sumptions discussed in the respective sections. In contrast, Ev-
erywhereContender (see Section 4) can indeed affect automa-
tion of calls. However, the negative impact this may potentially
cause can be minimized by conservatively adjusting parameters
as described in the respective section.

Having set the stage for minimally invasive surgery tech-
niques, we would like to briefly return to the above introduced
way of making optimal decisions among competing systems.
Equation 3 is mathematically somewhat imprecise in that

1. There may not be equally many samples (N ) drawn for
each system ξ.

2. The average savings for a system ξ may not be statisti-
cally stable enough to make a hard decision on what the
best system is.

Escalator and Engager are both based on offline simulation on
formerly collected data and therefore come along with a con-
stant N for all involved comparisons. EverywhereContender is
an online technique that relies on splitting traffic among mul-
tiple systems with strongly varying degrees, so, N highly de-
pendends on the system ξ. Moreover, it is possible that N(ξ)
is very small such that the arg max operation of Equation 3 be-
comes unreliable. Here, hard decisions have to be replaced by
probability-based soft decisions as done in Section 4.

2. Escalator

Looking at Equation 1, we see that non-automated calls always
result in negative savings proportional to the handling time of
the call. Consequently, reducing durations of non-automated
calls would lead to an increase of average savings. While this
is true for both automated as well as non-automated calls, non-
automated ones can be shortened aggressively by escalating to
an agent as early as possible. Optimally, if there were an oracle
telling us at the beginning of a call whether the call will end
up automated or not, one could escalate non-automated calls
before even entering the application.

We call an algorithm that deliberately escalates calls based
on its opinion about the call outcome Escalator. While the con-
cept of an Escalator (especially when talking about oracles) may
sound like an advanced topic, it does not have to be very sophis-
ticated. In fact, every spoken dialog system that transfers callers
to agents in a given situation already contains an instance of
an Escalator. Here, escalation reasons may simply include un-
solicited agent requests, speech recognition and understanding
problems, or situations the spoken dialog system does not know
how to handle. More sophisticated Escalators estimate the prob-
ability of the current call ending unsuccessfully at certain time
points throughout the call and escalate if a maximum proba-
bility threshold is exceeded [2, 3]. The probability estimator
can be based on any sort of features found to be of predictive
power. These features can include the whole dialog history up
to the current moment including transitions taken, textual and

acoustic speech input, respective acoustic and semantic confi-
dence scores, backend information, number and speed of inter-
action turns, number of no-match, no-input, or dis-confirmation
events, &c.

Hence, the Escalator’s probability estimation may involve a
rather complex algorithm requiring data input streams not avail-
able in many commercial spoken dialog architectures. E.g., the
common architecture of a dialog system uses speech data only at
the front-end. The recognizer transforms the acoustic input into
a word string or graph, and the language understanding com-
ponent extracts semantic contents from the recognizer’s output.
The Escalator, however, is part of the dialog manager that only
sees the output of the language understanding component but
does not have visibility to the acoustic features anymore.

A more straight-forward implementation of an Escalator
that does not require any type of feature processing at run-time
is to prune the call flow removing nodes and paths proven to
negatively impact the system’s overall performance. One way
to do this is to compute a node-dependent performance score by
calculating the average reward of calls hitting a specific node.
This can be done by evaluating log data of calls processed by
the application in question. For every node in the application,
this average score is computed resulting in a ranking list of
node-wise performances. Now, we want to see how the applica-
tion’s overall performance changes by incrementally eliminat-
ing nodes (and all paths coming from this node) starting from
the worst performing node.

Luckily, call flow pruning can be simulated in an offline
experiment (satisfying our demand for minimal invasion). This
is because we are able to tell the reward score a call would have
produced if it would have been escalated at a certain node: We
know the call duration at the moment of early escalation, and
we know the fact whether the call was considered automated at
this moment or not1.

In order to demonstrate the effectiveness of the pruning
Escalator, we used log data taken from a cable Internet trou-
bleshooting application collected over a period of four days in
March 2010. Table 1 contains the corpus statistics of this exper-
iment.

Table 1: Corpus statistics Escalator experiment

#calls (tokens) 45,631
#nodes (types) 847
#nodes pruned 176

TA 5,000s
R w/o pruning 183.5s
R w/ pruning 196.8s

∆R 13.3s

Figure 1 shows how the reward as defined in Equation 4
evolves with more and more nodes pruned. An optimum is
reached for 176 pruned node types.

1In almost all cases, an early escalated call will be non-automated
and, consequently, result in a negative reward. The effectiveness of call
flow pruning comes from the fact that there may be many nodes and
paths whose individual automation rate is extremely low. The handling
time may have a worse effect on the average reward than the few auto-
mated calls can compensate for.



Figure 1: Optimizing an Escalator based on call flow pruning

3. Engager

The major weakness of the Escalator technique is that it has
a potential negative effect on the automation rate. The over-
all reward gain is only achieved by reducing handling time
much more effectively than negatively affecting automation
rate. When pruning gets too aggressive (in the above exam-
ple for more than 176 node types) then the reduction of the au-
tomation rate dominates the game, and the reward curve starts
falling.

Can we possibly reduce handling time without negatively
impacting automation? While there are multiple straight-
forward ways to do so (such as speeding up prompts, reducing
latency caused by technical issues as slow network, underper-
forming backend databases, or sub-optimal file caching), there
is also a less obvious technique we baptized Engager because it
engages the current application design in a complete resynthe-
sis.

One of the questions coming up during the design of a spo-
ken dialog application is the optimal sequence with which the
different nodes are to follow each other. Imagine we want to
find out which modem a caller is using out of a variety of three:
a black Motorola, a white Motorola, and a black Scientific At-
lanta. Now, we may not want to ask for the two dimensions
color and brand in one question to avoid confusion and there-
fore split the disambiguation task in two possible questions:

A Is your modem black or white?

B Do you have a Motorola or a Scientific Atlanta modem?

Naturally, if the caller responds “white” to A, it is a Motorola, so
we do not have to ask B. However, we could also ask B first, and
when the response is “Scientific Atlanta”, the color is black, and
we would not have to ask A anymore. So, which one is better
A→B or B→A?

The optimal order is that one that minimizes the average
number of asked questions per call, hence, resulting in the low-
est average handling time. Say, we know that 50% of the callers
have a Motorola and 80% have a black modem. The order
A→B would then have us ask the second question in 80% of
the calls, so, the average number of questions per call would be
1.8. B→A would result in only 1.5 questions asked in average
and would therefore be the preferred order in this scenario.

At the design time of an application, such statistics may
not be available hence forcing the interaction designer to make
arbitrary decisions on the orders of nodes. However, once the
applications starts taking traffic, statistics become available, and
nodes can be re-ordered to optimize for handling time.

In [4], we applied Engager to a call routing application. The
experiment’s properties are shown in Table 2. After collecting
statistics from almost 4 million calls, optimal reordering of the
questions resulted in a cut of 1.13 questions per call on average
or an average reward gain of 10.5s.

Table 2: Corpus statistics Engager experiment

#calls (tokens) 3,868,014
#routing points 20

#questions w/o Engager 4
#questions w/ Engager 2.87

∆R 10.5s

4. EverywhereContender

Pruning and reordering nodes are apparently effective strate-
gies to optimize spoken dialog systems. However, both of them
achieve a reward gain mainly by reducing an application’s han-
dling time. Is there no way, we can positively influence automa-
tion rate, the other addend to the reward function?

In fact, looking at a given application, there may be a thou-
sand things one can think of changing with a potential impact
on automation rate. Is directed dialog best in this context? Or
open prompt? Open prompt given an example? Or two? Or
open prompt but offering a backup menu? Or a yes/no question
followed by an open prompt when the caller says no? What
are the best examples? How much time should I wait before I
offer the backup menu? Which is the ideal confirmation thresh-
old? What about the voice activity detection sensitivity? When
should I time out? What is the best strategy following a no-
match? Touch-tone in the first or only in the second no-match
prompt? Or should I go directly to the backup menu after a
no-match? What in the case of a time-out? &c.

Not even the smartest interaction designer will be able to
come up with an optimal decision. So, can we do something
similar like we did with Escalator and Engager? Can we look
at data to find out what is optimal? When we allow for a litte
degree of live experimentation, we can. We can implement all
of the above solutions into our application and let them con-
tend. We can route a certain amount of traffic to each of the
contenders by randomly choosing one of them in every call and
then measure the average reward for each contender by look-
ing at data. The invasiveness of this approach can be reduced
by lowering the amount of traffic hitting certain contenders ex-
pected to be underperforming.

Generally, the randomizer that decides which of the con-
tender gets a given call, uses a set of weights associated with
each of the contenders to decide how much traffic to route to
which contender. When these weights are real numbers sum-
ming up to one, then each of them can be interpreted as the
probability with which the respective contender is chosen. Ide-
ally, it should be the probability that the respective contender is
the winner, taking all available statistical information into ac-
count. E.g., when there were two contenders A and B, and we



were able to tell from data that A is the winner with a 80%
chance, 80% of the traffic should be routed to A. While collect-
ing more and more data, the probabilities keep changing, and
the traffic hitting each contender keeps changing accordingly,
until, at some point in time, a definitive winner is found.

The estimation of the contender probabilities can be based
on statistical tests such as t and z tests [5, 6] for two-way con-
tender splits. Here, the probability of a contender is the p value
of observing a value for the test statistic that, assuming the null
hypothesis being true, is at least as extreme as the value that was
actually observed. Consequently, statistical significance of the
contender approach is inherent to the probability estimation. A
contender is significantly underperforming when its probability
falls under, say, 1%, i.e., a p value of 0.01. In case of an n-way
contender split, the numeric solution of n-dimensional integrals
over the probability distributions of each of the contenders is
required.

As an example, we applied three contender splits to a cable
television troubleshooting application, one four-way split and
two two-way splits. Table 3 contains the experimental proper-
ties. Since our experiment was based on less than 40,000 calls,
with a single exception, none of the contenders was found to
perform statistically significantly worse than its competitors.
Only one contender of the four-way split resulted in a proba-
bility of less than 1%. Despite this lack of data to make final
decisions, the adapted probabilities resulted in an overall per-
formance gain of 29.4s compared to the baseline system which
used equiprobable contenders. This demonstrates the effective-
ness of the EverywhereContender approach in that it has the po-
tential of positively impacting not only handling time but also
automation rate.

Table 3: Corpus statistics EverywhereContender experiment

#calls (tokens) 38,004

TA 5,000s
R baseline 253.4s

R after contending 282.9s

∆R 29.4s

Similar to the two types of Escalators we discussed in Sec-
tion 2, the one based on pure offline pruning (static) and the one
based on a probability estimator during the course of a call (dy-
namic), there can be two ways of implementing the contender
probability estimator. The probability weights can be calculated
as described above and be static to a given contender split. On
the other hand, the probability may depend on run-time vari-
ables such as the identity of the caller, the season, day of the
week, or time of the say, the response to questions in the his-
tory of the call, or even acoustic parameters indicating a certain
caller behavior. This type of dynamic contender model may
even further drive system performance, however, as in the case
of Escalator, it requires advanced intergration and control mech-
anisms and may come along with a higher degree of invasion
and potential unpredictable behavior. In that, the contender ap-
proach resembles other approaches to statistical spoken dialog
system design such as reinforcement learning [7], or partially
observable Markov decision processes [8].

5. End

This paper discussed three techniques for optimizing perfor-
mance of spoken dialog systems by doing either offline simu-
lations (Escalator, Engager) or minimally invasive production
experimentation (EverywhereContender). The impact of these
techniques was shown on examples from three application do-
mains (Internet and cable television troubleshooting as well as
call routing) using a reward function that takes both automation
rate and handling time into account. We found that the offline
techniques Escalator and Engager are able to improve perfor-
mance mainly by reducing average handling time whereas Ev-
erywhereContender is also able to impact automation rate. All
three techniques are still in the early stage of commercial im-
plementation. Specifically, the dynamic versions of Escalator
and EverywhereContender require extensive changes to conven-
tional architecture of spoken dialog systems and have therefore
not been used in any commercial application yet.

6. Expedients
[1] K. Acomb, J. Bloom, K. Dayanidhi, P. Hunter, P. Krogh, E. Levin,

and R. Pieraccini, “Technical Support Dialog Systems: Issues,
Problems, and Solutions,” in Proc. of the HLT-NAACL, Rochester,
USA, 2007.

[2] E. Levin and R. Pieraccini, “Value-Based Optimal Decision for
Dialog Systems,” in Proc. of the SLT, Palm Beach, Aruba, 2006.

[3] A. Schmitt, M. Scholz, W. Minker, J. Liscombe, and D. Suender-
mann, “Is it Possible to Predict Task Completion in Automated
Troubleshooters?,” in submitted to the Interspeech, Makuhari,
Japan, 2010.

[4] D. Suendermann, J. Liscombe, and R. Pieraccini, “Optimize
the Obvious: Automatic Call Flow Generation,” in Proc. of the

ICASSP, Dallas, USA, 2010.

[5] D. Zimmerman, “A Note on Interpretation of the Paired-Samples
t Test,” Journal of Educational and Behavioral Statistics, vol. 22,
no. 3, 1997.

[6] R. Sprinthall, Basic Statistical Analysis, Pearson Education Group,
Upper Saddle River, USA, 2003.

[7] L. Kaelbling, M. Littman, and A. Moore, “Reinforcement Learn-
ing: A Survey,” Journal of Articial Intelligence Research, vol. 4,
1996.

[8] S. Young, “Talking to Machines (Statistically Speaking),” in Proc.

of the ICSLP, Denver, USA, 2002.


