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Abstract 
Automated assessment of language proficiency of a test taker’s 
spoken response regarding its content, vocabulary, grammar 
and context depends largely upon how well the input speech can 
be recognized. While state-of-the-art, deep neural net based 
acoustic models have significantly improved the recognition 
performance of native speaker’s speech, good recognition is 
still challenging when the input speech consists of non-native 
spontaneous utterances. In this paper, we investigate how to 
train a DNN based ASR with a fairly large non-native English 
corpus and make it self-adaptive to a test speaker and a new 
task, namely a simulated conversation, which is different from 
them monologic speech in the training data. Automated 
assessment of language proficiency is evaluated according to 
both task completion (TC) and pragmatic competence (PC) 
rubrics. Experimental results show that self-adaptive DNNs 
trained with i-vectors can reduce absolute word error rate by 
11.7% and deliver more accurate recognized word sequences 
for language proficiency assessment. Also, the recognition 
accuracy gain translates into a gain of automatic assessment 
performance on the test data. The correlations between 
automated scoring and expert scoring could be increased by 
0.07 (TC) and 0.15 (PC), respectively. 
Index Terms: speech recognition, non-native spontaneous 
speech, automated speech scoring, DNN, i-vectors 

1. Introduction 
In recent years, deep learning in combination with large 
databases have significantly improved performance and system 
robustness of speech recognition, dialogue management, 
language understanding and machine translation [1-3]. This has 
also resulted in an increased interest in conversation-based 
computer-assisted language learning (CALL), in which 
formative assessment of spoken language proficiency is a core 
component.  

Traditionally, automatic assessment of spoken language is 
performed on restricted speech, e.g., reading a sentence out 
loudly. This is due to the difficulty in obtaining accurate ASR 
output to be used for scoring the responses, especially for non-
native speech that may contain pronunciation errors, high 
amounts of disfluencies, ungrammatical phrases, etc. [4] 
Recently, with the significantly improved discrimination of 
acoustic modeling by deep learning in ASR, several automated 
assessment systems were developed to score spontaneous 
speech [5-8]. The comparison between DNN-HMM and GMM-
HMM for acoustic modeling shows that DNN-HMM can 
significantly increase speech recognition performance of test 
takers’ responses, and improve the quality of the extracted 
features for automatic assessment of spoken language 

proficiency, and consequently achieve a performance close to 
that of human scorers.  

However, most systems are task-dependent, i.e., building 
acoustic models and scoring models for different datasets is 
usually data- and time-consuming. In real applications, the pilot 
data used for building the original ASR is often not enough to 
produce output that is accurate enough to be employed for 
assessing spontaneous responses. [8] directly applies ASR to 
multiple tasks and domains without adaptation, counting on the 
inherent relative robustness of DNN over GMM for acoustic 
modeling. Despite the ASR accuracy improvement, the 
performance of automated assessment is still suffering. The idea 
of linear transformation, which is generally used to GMM 
adaptation, is not applicable to DNN, since it would require a 
nonlinear transformation for layer connections and 
discriminative training with back-propagation (BP) rather than 
maximum likelihood (ML) training with expectation–
maximization (EM). Currently, the effective adaptation of 
DNN-based acoustic models for ASR is an active research area 
[13]. To our knowledge, there are few research studies 
investigating the adaptation of DNN-HMM with limited data 
for the purpose of assessing non-native spontaneous speech.  

In this paper, we explore the adaptation of ASR built on a 
very large non-native English corpus to the assessment of 
language proficiency for non-native spontaneous speech in a 
simulated conversion. A comparison of adapting acoustic 
models between GMM-HMM and DNN-HMM and 
interpolating language models from monolog tasks to simulated 
dialog tasks is drawn. Features extracted from the ASR output 
with different adaptation strategies are also surveyed for their 
correlation to human scores and their contribution to the 
automated scoring models.  

2. Data and Task 
Two non-native spontaneous English corpora are used in this 
study. The first is drawn from a large-scale standardized spoken 
language proficiency test which measures a non-native 
speaker’s ability to use and understand English at the university 
level. The speaking tasks in this test elicit monologs of 45 or 60 
seconds in duration; example tasks include expressing an 
opinion on a familiar topic or summarizing information 
presented in a lecture. Human experts were recruited to rate the 
responses using holistic rubrics on a 1-4 scale that cover the 
following three main aspects of speaking proficiency: delivery, 
language usage and topic development. This corpus is hereafter 
referred to as the monolog corpus.  

The second corpus is drawn from a pilot administration of 
an assessment of non-native English speaking proficiency for 
academic purposes. This assessment contained a task type in 
which the test taker is presented with a set of stimulus materials, 
such as a course schedule, an advertisement for a job on 
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campus, etc., and is then presented with a series of spoken 
prompts from a computer-based interlocutor in the form of a 
simulated dialog. After each response from the test taker, the 
subsequent prompt from the computer-based interlocutor is 
played, until the final prompt has been reached. Expert human 
raters provided proficiency ratings for an entire simulated 
dialog, i.e., a rater listened to all of the responses provided by a 
test taker in the conversation and then provided a single score 
for the entire conversation. Ratings were given on a scale of 1-
5 for the following two dimensions of speaking proficiency: 
Task Completion (TC), which demonstrates an ability to 
complete the communicative demands of the task by providing 
the required content from the stimulus materials and using 
correct grammar and vocabulary, and Pragmatic Competence 
(PC), which demonstrates an ability to use language that is 
appropriate to the context (situation and role). The corpus and 
scoring rubrics are described in further detail in [4]. This corpus 
is hereafter referred to as the dialog corpus.  

The monolog corpus contains over 800 hours of non-native 
spontaneous speech covering over 100 L1s (native languages) 
across 8,900 speakers. The acoustic and language models of our 
ASR system were trained on this corpus. Table 1 presents the 
number of speakers, number of responses and duration of 
speech for three partitions that were used for building the ASR 
system: training (AsrTrain), development (AsrDev), and 
evaluation (AsrEval); there is no speaker overlap across the 
three partitions. 

Table 1. Number of speakers, responses and duration of speech 
for each data partition in the monolog corpus. 

 AsrTrain AsrDev AsrEval 
# Speakers 8,700 100 100 
# Responses 52,200 600 600 
# Hours 819 9.4 9.4 

 

The dialog corpus consists of 1,922 test takers representing 
51 L1s. The 1,922 conversations (10,276 responses) from the 
simulated dialog task are divided into the following four sets 
(with no speaker overlap) for the current study: ASR adaptation 
(AsrAdapt), ASR evaluation (AsrEval), scoring model training 
(SmTrain) and scoring model evaluation (SmEval). The 
corresponding number of speakers, responses and hours are 
presented in Table 2. 

Table 2. Number of speakers, responses and duration of speech 
for each data partition in the dialog corpus. 

 AsrAdapt AsrEval SmTrain SmEval 
#Speakers 584 201 860 277 

#Responses 3,155 1,072 4,585 1,464 
#Hours 26 9 38 12 

 

3. Speaker Adaptation of DNN 
Although DNN based ASR systems show superior 
generalization capability than those based on GMM, they still 
suffer from a mismatch between training models and testing 
speakers’ data, which can be caused by variation of acoustic 
environment, speakers and task domain. Our system built on the 
monolog corpus has a large degradation of recognition accuracy 
when ported to unseen speakers and domains [8]. Our 
conjecture is that speaker mismatch here is not only caused by 
the variation of speaker characteristics, e.g, vocal tract length 
and speaking style, but also by the variation of L1, due to the 

mismatch between the nature of the recordings in the monolog 
and dialog corpora.  

There are a considerable number of approaches to 
investigate the feature transformation of test speakers towards 
trained models [9], models (or certain layers of models) re-
update towards testing speakers [10], or training with additional 
speaker information [11-13]. DNNs, unlike GMMs, do not have 
a straightforward way to adapt models due to significantly more 
parameters of deep hidden layers and distributed training. Since 
there are no overlapping speakers between the two tasks in this 
study, the unsupervised approaches of feature-space adaptation 
and adding speaker information are explored. 

3.1. Adapting DNNs with fMLLR 
Feature-space maximum likelihood linear regression (fMLLR) 
[14], is an affine feature transform of the form 

x Ax b� �x Ax bAxAx                                   (1) 
where a d by d transformation matrix A and a d-dimensional 
bias vector b are estimated by aiming to maximize the 
likelihood of adaptation data. fMLLR transformed features are 
used as the input to the DNN. It is regarded as feature 
normalization rather than the original concept of fMLLR 
adaptation of GMM, in which the transform needs to be 
estimated in the maximum likelihood sense with the EM 
algorithm. We use unsupervised 2-pass estimation in the 
decoding procedure. The first pass decoding is performed with 
GMM-HMM models. The lattice outputs by the first pass are 
used to compute fMLLR transforms on each speaker, and the 
second pass decoding is performed using a DNN trained on 
fMLLR transformed acoustic features, which are also produced 
by GMM-HMM. 

3.2. Adapting DNNs with i-vectors 
Based upon factor analysis, an i-vector is a compact 
representation of a speech utterance in a low-dimensional 
subspace [15, 16]. The i-vector approach has become the state-
of-the-art in the speaker recognition field. Given a GMM, the 
corresponding mean super-vector M can be approximated by: 

 M m T�� �                                 (2) 

where m represents a speaker- and channel-independent 
supervector, which can be estimated by a UBM; T is a low-rank 
matrix representing the total variability of speaker and channel 
across the collected data. �  is the i-vector, a low-dimensional 
vector with a normally distributed prior N(0; I), estimated by 
the EM algorithm over the training corpus. We extract an i-
vector for each speaker by using a pre-trained T matrix and 
append this feature vector with the acoustic feature vector as 
input to the DNN training and later the recognition. Length 
normalization [17] is applied to the i-vector to sharpen its 
Gaussian distribution and match the distributions of training 
and testing. In addition, to avoid over-fitting of DNN training 
with i-vectors, the weight decay parameter of l2 regularization 
is adjusted.  

Although both fMLLR transformed features and i-vector 
appended features are used to adapt the DNN, they seem to have 
different physical meanings. fMLLR is a technique to remove 
speaker variability and the corresponding transformed features 
are supposed to no longer contain information related to the 
speaker. DNN trained based on fMLLR transformed features 
should be regarded as speaker independent (SI) models. 
However, i-vectors are to capture all the speaker-specific 
information in a speaker sensitive subspace. A DNN trained on 
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features with appended i-vectors is to learn speaker-specific 
information for improving its robustness to unseen speakers, 
whose i-vectors can be extracted by the T matrix. 

4. Language Proficiency Assessment 
Over 100 features that cover a range of linguistic characteristics 
of the spoken response, such as fluency, intonation, stress, 
rhythm, pronunciation, vocabulary, and grammar, were 
extracted for assessing a language learner’s English speaking 
proficiency [18]. The feature extraction is performed by using a 
two-pass approach that first conducts ASR on the spoken 
response using acoustic and language models trained from non-
native spontaneous speech and then conducts forced alignment 
of the spoken response to the ASR output using an acoustic 
model trained on native speech. The non-native ASR is mainly 
used to extract the features that address the appropriateness of 
content, vocabulary, grammar and context usage, while native 
ASR is employed to extract the features used to evaluate 
pronunciation, fluency, and intonation against nativeness. In 
this study, we explore the impact of improved non-native ASR 
on the assessment of language proficiency. The following three 
features, which are extracted from non-native ASR and resulted 
in the highest correlations with human scores, are investigated 
in detail by adapting the non-native ASR from monolog to 
dialog tasks. 

LSA: Latent semantic analysis is used to extract contextual 
meaning of words by statistical computations for a large corpus 
of text.  LSA can estimate the quality and quantity of knowledge 
contained in an essay and then assess the learnability of 
passages by individual students [24]. Here a test taker’s spoken 
response is graded by the similarity between recognized word 
and word sequences from test taker and the training set, 
projected in a reduced space. 

CVA: Content Vector Analysis is another approach to 
estimating the appropriateness of spoken content [25]. CVA is 
similar to LSA in that it uses cosine similarity measures, but no 
SVD is employed in CVA. In addition, CVA differs from LSA 
in that CVA divides responses into groups of human scores [4]. 

CS: Confidence score is a measure of confidence for the 
recognized word or other units from ASR. Generally, CS is the 
posterior probability of the ASR output and used as an 
invaluable source of information when incorporating the ASR 
output into other systems. We use the average of word 
confidence score per response as feature. 

A statistical model is used to predict the final proficiency 
score from all features provided.  

5. Experiments and Results 
ASR systems are constructed by using the tools from Kaldi [19] 
and CNTK [27].  

5.1. Experimental setup 
GMM-HMM and DNN-HMM are trained by using the data set 
of AsrTrain from monolog corpus.  

The input feature vectors used to train GMM-HMM contain 
13-dim MFCCs and their first and second derivatives. 
Contextual dependent phones, tri-phones, are modeled by 3-
state HMMs and the pdf of each state is represented by a 
mixture of 8 Gaussian components. The splices of 9 frames (4 
on each side of the current frame) are projected down to 40-
dimensional vectors by linear discriminant analysis (LDA), 

together with maximum likelihood linear transform (MLLT), 
and then used to train GMM-HMM in the ML sense. To 
alleviate the mismatch between the training criterion and 
performance metrics, the parameters of GMM-HMM are then 
refined by discriminative maximum mutual information (MMI) 
training. 

The features used to train DNN are MFCC features with the 
same dimensions as those used in GMM-HMM. The input 
features stacked over a 15 frame window (7 frames to either side 
of the center frame for which the prediction is made) are used 
as the input layer of DNN. The output layer of DNN has 4057 
nodes, i.e. senones of the HMM obtained by decision-tree based 
clustering. The input and output feature pairs are obtained by 
frame alignment of the senones with GMM-HMM. The DNN 
has 7 hidden layers, each layer with 1024 nodes. The sigmoid 
activation function is used for all hidden layers. All the DNN 
parameters are initialized by layer-wise BP pre-training [20], 
then trained by optimizing the cross-entropy function through 
back-propagation, and finally refined by Sequence-
discriminative training using state-level minimum Bayes risk 
(sMBR).  

Speaker adaptive training is performed on GMM-HMM. 
The 40×41 fMLLR transform is estimated for each speaker 
upon LDA and MLLT normalized features by the EM algorithm 
with GMM-HMM. fMLLR transformed features are fed into the 
training of DNN-HMM. AsrTrain of the monolog corpus is also 
used to train hyper-parameters: GMM-UBM and T-matrix for 
i-vector extraction. A 100 dimensional i-vector is extracted to 
be stacked with original DNN input features per frame to train 
DNN-HMM. 

The CMU pronunciation dictionary [21] is used to build a 
grapheme-to-phoneme (G2P) converter by data-driven joint-
sequence models [22]. After text normalization for 
transcriptions, we use G2P to automatically generate 
pronunciations for each word in the transcription and combine 
them with the CMU dictionary to create a new pronunciation 
dictionary. The vocabulary size of AsrTrain in the monolog 
corpus is 23,144. There are 582 unseen words in the AsrAdapt 
set of dialog. The same G2P converter is used to predict their 
pronunciations to be added to the pronouncing dictionary.  

Two trigram LMs are trained from the transcriptions of the 
AsrTrain set in the monolog corpus and the AsrAdapt set in the 
dialog corpus by the IRSTLM toolkit [23], separately. Linear 
interpolation is used to combine these two LMs. The 
interpolation weight is optimized by minimizing the WER on 
the AsrEval set in the dialog corpus. The interpolated 
(combined) LM is finally represented as a finite state transducer 
(FST) for weighted FSTs (WFSTs) based decoding.  

The native ASR used for extracting nativeness related 
features, is built by data from the Wall Street Journal CSR 
Corpus, which contains about 36k utterances recorded by 284 
native American English speakers. The scoring model is built 
on the SmTrain set of the dialog corpus by using a random forest 
regressor [26], which achieves the best performance over other 
regressors, e.g., AdaBoost and DecsionTree. The scores for TC 
and PC are mostly rated by two experts except that the third 
opinion is given when the scores from those two experts differ 
by more than one. We use the average scores from experts as 
the ground truth or reference score to build scoring model.    
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5.2. ASR results and analysis 
Performance results of the ASR for using GMM and DNN for 
acoustic modeling and speaker adaptation with fMLLR and i-
vector are listed in Table 3. In can be seen that:  

1) The performance of ASR with DNN-based AM drops 
significantly, i.e., WER is increased from 24.2% to 35.0%, in 
cross-task speech recognition from monolog to dialog. It is even 
worse (2.9% higher WER) than the performance of GMM-
based AM with fMLLR adaptation, which reinforces our 
motivation to adapt DNNs toward target speakers in the test 
domain. 

2) Both fMLLR and i-vector are effective for speaker 
adaptation and result in WER reduction. Speaker adaptation 
with i-vector, however, achieves the best performance, i.e, the 
absolute WER improves by 4.1% and 3.6%, respectively, when 
comparing with fMLLR on the AsrEval sets of monolog and 
dialog. We conjecture that i-vectors extracted from the monolog 
corpus convey certain phonetic variations brought by the L1s of 
test takers in addition to speaker characteristics, transmission 
channel and acoustic environment. It will be tested for L1 
identification in our future work. Furthermore, the i-vector, due 
to its properties, can well interpolate the unseen speakers in 
reduced-dimension subspace and hence the frame posterior 
probabilities generated by DNNs are well interpolated for 
decoding. 

3) DNN consistently outperforms GMM for acoustic 
modeling, with or without speaker adaption. DNN AM with 
adaptation and DNN+i-vector can significantly improve the 
performance of ASR, i.e., absolute WER reductions of 7.6% 
and 8.8% for monolog and dialog, compared with GMM AM 
with adaption, GMM+fMLLR, which is slightly better than the 
improvement obtained by going from GMM to DNN without 
adaptation. DNN capability in modeling longer-span, higher 
dimensional and correlated input features has made the 
integration i-vector with DNN seamless. On the other hand, 
incorporate i-vector with GMM AM is nontrivial. 

Table 4 shows the effect of LM interpolation for cross-task 
speech recognition by evaluating the WER of Dialog AsrEval. 
The combined LM outperforms either LM trained from 
Monolog AsrTrain or LM trained from Dialog AsrAdpt. The 
optimized weight for interpolation is 0.9 assigned to LM trained 
from Dialog.  

5.3. Proficiency assessment results and analysis 
The results of language proficiency assessment are shown in 
Table 5. The content related features: LSA, CVA and CS, 
extracted from different ASRs, i.e., AM trained by GMM and 
DNN with speaker adaptation of fMLLR and i-vector, are 
evaluated by Pearson correlation coefficient with reference 
scores (average expert scores). It shows that the higher 
recognition accuracy achieved by ASR, the higher correlations 
with the reference (expert) scores. As a reference, the accuracy 
of content words of nouns, verbs, or adjectives, delivering 
lexical meaning, rather than indicating a syntactic function, by 
using different ASRs for Dialog SmEval is listed in Table 6. 
Table 5 also shows that CVA features outperform LSA features 
for the TC scores, but the opposite phenomena is observed for 
the PC scores. We imagine that LSA features capture the long 
contextual information by using frequency of word sequence 
and is supposed to be more related to the scoring rubrics of PC 
scores. By using adapted DNN instead of adapted GMM, the 
performance of the automated scoring model, which employs 
more than100 features including LSA, CVA and CS, can be 

significantly improved from 0.77 to 0.82 for TC and from 0.68 
to 0.81 for PC. The improvement for PC scores (approximately 
0.13) is much larger than for TC scores. We think that rating PC 
score is more related to the ability of understanding and 
participating conversion effectively, so the performance of 
automated scoring should be more affected by the accuracy of 
ASR outputs. DNN adaptation with i-vector can achieve 
additional 0.02 and 0.03 improvement of correlation coefficient 
with reference scores for TC and PC scores, respectively, 
comparing with DNN adaptation with fMLLR.  

Table 3. WER(%) of GMM and DNN acoustic models with 
fMLLR and i-Vector adaptations on Monolog and Dialog 
AsrEval sets.  

 Monolog(AsrEval) Dialog(AsrEval) 
GMM 28.5 42.9 

GMM+fMLLR 26.1 32.1 
DNN 24.2 35.0 

DNN+fMLLR 22.6 26.9 
DNN+I-Vector 18.5  23.3 

Table 4. WER(%) of language models with different 
interpolation weights on Dialog AsrEval sets. 

Weight GMM+fMLLR DNN+I-Vector 
1 33.8 24.5 

0.9 32.1 23.3 
0.7 32.4 23.5 
0.5 32.9 23.9 

0 (w/o) 45.2 33.1 

Table 5. Correlations of individual features: LSA, CVA and CS 
generated by different ASRs, with reference scores (average 
expert scores), correlations between automated scores from 
scoring model (SM) and reference scores. 

 Task Completion Pragmatic Competence 
LSA CVA CS SM LSA CVA CS SM 

GMM+fMLLR 0.48 0.53 0.42 0.77 0.55 0.54 0.42 0.68 
DNN 0.47 0.53 0.41 0.75 0.54 0.52 0.39 0.66 

DNN+fMLLR 0.52 0.60 0.52 0.80 0.60 0.58 0.54 0.78 
DNN+i-vector 0.54 0.62 0.56 0.82 0.62 0.61 0.57 0.81 

Table 6. The accuracy (%) of content words by using different 
ASRs for SmEval set of Dialog corpus. 

 GMM+fMLLR DNN+fMLLR DNN+i-vector 
SmEval 71.3 78.9 81.9 

6. Conclusions 
In this paper, we propose an i-vector based, self-adaptive DNN 
AM and show it can improve speech recognition performance, 
which in turn improves the language proficiency assessment of 
spoken input of non-native speakers in a simulated conversation 
task. Significant WER reduction is observed for the adapted 
ASR with the i-vector based speaker adaptive AM and 
interpolation of LM. The resultant better recognized word 
sequence then significantly boosts the performance of 
automated language proficiency assessment.    
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