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Abstract
We present a spoken dialog-based framework for the computer-
assisted language learning (CALL) of conversational English.
In particular, we leveraged the open-source HALEF dialog
framework to develop a job interview conversational applica-
tion. We then used crowdsourcing to collect multiple interac-
tions with the system from non-native English speakers. We an-
alyzed human-rated scores of the recorded dialog data on three
different scoring dimensions critical to the delivery of conver-
sational English – fluency, pronunciation and intonation/stress
– and further examined the efficacy of automatically-extracted,
hand-curated speech features in predicting each of these sub-
scores. Machine learning experiments showed that trained scor-
ing models generally perform at par with the human inter-rater
agreement baseline in predicting human-rated scores of conver-
sational proficiency.
Index Terms: dialog systems, computer assisted language
learning, conversational assessment, intelligent tutoring sys-
tems, crowdsourcing

1. Introduction
The increasing maturation of automated conversational tech-
nologies in recent years holds much promise towards develop-
ing intelligent agents that can guide one or multiple phases of
student instruction, learning, and assessment. This is very use-
ful for applications such as language learning, since it is impor-
tant to elicit learners’ speech in as naturalistic a conversational
setting as possible to better prepare them for the challenge of
speaking a new language. Even from the assessment perspec-
tive, given that most large-scale “prompt-response” tests of non-
native English proficiency (such as the TOEFL1, BULATS2 or
Pearson Test of English Academic3) do not contain interactive
dialogue, these types of tests are not able to elicit the full range
of English speaking skills (such as turn taking abilities, polite-
ness strategies, pragmatic competence) that are required for suc-
cessful communication. Well-designed interactive dialog-based
tasks have the potential to fill this gap. Spoken dialog technolo-
gies are also important since they offer opportunities for per-
sonalizing education to each learner, thereby providing a natu-
ral and practical learning interface that can adapt to a learner’s
individual strengths and weaknesses in real time so as to in-
crease the efficacy of instruction [1]. In the future, such sys-
tems could potentially build an individualized profile for each

1http://www.ets.org/toefl
2http://www.bulats.org/
3http://pearsonpte.com/

learner that diagnoses gaps in knowledge and ability, adaptively
composes instruction material, performs formative evaluation
in many rounds of testing, scaffolds student learning through
intelligent tutoring strategies, recommends when the learner is
ready for a high stakes summative evaluation, and formulates
long-term goals [2].

While there has been much work on the scoring of spoken
monologic responses (and pronunciation scoring in particular;
see [3, 4, 5, 6, 7, 8]) including the analysis of human inter-rater
agreement (see [9, 10]), there has been limited work on the de-
velopment and validation of automated speech scoring of spo-
ken dialogic responses. In one study, spoken responses were
collected and scored in the context of simulated dialogs [11]. In
the study’s design, the language learners participated in multi-
turn conversations with a virtual interlocutor about university-
related topics; however, the system’s response was fixed and
did not vary based on the learner’s response, i.e., there were
no branching dialog states. The conversations were then scored
by expert human raters (a single score on a scale of 0-4 was
provided for the learner’s performance in the conversation) and
automated scores were computed based on a range of speak-
ing proficiency features aggregated across the utterances in the
conversation. In another recent study, language learners’ spo-
ken responses were collected using three different task-oriented
interactive dialog systems (the tasks were ordering a laptop, se-
lecting a restaurant, and finding a bus route) [12]. Expert human
raters provided proficiency scores for the learner’s performance
in each dialog using the CEFR scale and automated speech scor-
ing models using features based on the audio signal and fluency
characteristics were used to predict these scores. The method-
ology of the current study differs from these previous studies in
that we obtained speaking proficiency ratings for each response
in the dialog, not just for the entire conversation, and we ob-
tained analytic ratings across multiple dimensions of speaking
proficiency. The fine-grained proficiency ratings thus enable
the possibility of providing more targeted automated feedback
about the learner’s English proficiency.

2. Data
2.1. The HALEF dialog ecosystem

We use the HALEF dialog system4 to develop conversational
applications within the crowdsourcing framework. HALEF is
an open-source, modular, cloud-based dialog system that is
compatible with multiple W3C and open industry standards.
The HALEF architecture and components have been described

4http://halef.org
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Table 1: Human scoring rubric covering three dimensions of speech delivery (fluency, pronunciation, and intonation/stress)

4 3 2 1 0
Very Good Generally good Somewhat Limited Very Limited

1. Fluency Very good tempo and min-
imal hesitation. The re-
sponse includes pauses at
appropriate locations to for-
mulate ideas.

Good tempo and minimal
hesitation. The response in-
cludes some pauses to for-
mulate ideas which mini-
mally impacts the flow of
speech.

Noticeable pauses and hes-
itations. The tempo is
choppy, and/or filler words
are frequent in the response.

Frequent long pauses
and/or use of filler words.
It is challenging to follow
the flow of ideas due to
frequent long pauses and/or
filler words.

No response or
no English in
the response

2. Pronunciation Highly intelligible. Though
the response may include
L1 influence, word-level
pronunciation do not im-
pact intelligibility.

Generally intelligible.
Though the response may
show noticeable L1 accent,
word-level pronunciation
do not significantly impact
intelligibility.

Generally unintelligible.
The response shows no-
ticeable L1 accent. Errors
in word-level pronuncia-
tion occasionally hinder
intelligibility.

Unintelligible. The re-
sponse shows noticeable L1
accent. Errors in word-level
pronunciation substantially
impact intelligibility.

OR The re-
sponse is
completely
unrelated to the
test

3. Intonation/Stress Appropriate sentence-level
intonation and stress used
to convey meaning. Intona-
tion and stress do not hinder
intelligibility.

Generally appropriate
sentence-level intonation
and stress used to convey
meaning. Non-target in-
tonation and stress may
mildly impact intelligibil-
ity.

Generally inappropriate
sentence-level intonation
and stress used to convey
meaning. Non-target in-
tonation and stress impact
intelligibility.

Inappropriate sentence-
level intonation and stress
used to convey meaning.
Inappropriate intonation
and stress significantly
reduce intelligibility.

OR Non-
scorable (e.g.,
audio file is
largely unintel-
ligible)

in detail in prior publications [13, 14, 15].

2.2. Crowdsourcing data collection

We leveraged the aforementioned HALEF dialog system to de-
velop conversational applications within an Amazon Mechani-
cal Turk crowdsourcing framework. In this iterative data col-
lection framework, the data logged to the database during ini-
tial iterations is transcribed, annotated, rated, and finally used to
update and refine the conversational task design and models for
speech recognition and spoken language understanding. Since
the targeted domain of the tasks in this study is conversational
practice for English language learners, we restricted the crowd-
sourcing user pool to non-native speakers of English. In all, we
collected 768 conversational interactions between callers and
the dialog system for the interview task described below, 123
of which were used as the cross-validation train/test set for au-
tomated scoring experiments (1893 utterances, 17,456 tokens;
average turn length = 6.3s; average call duration = 364s) the re-
maining 645 were used as a development set (8672 utterances,
83755 tokens; average turn length = 6.5s; average call duration
= 304s) for tuning the automatic speech recognizer language
models used in the speech scoring experiments5.

2.3. The Conversational Interview Task

This study examines a conversational task developed for En-
glish language learners that was designed to provide speaking
practice for non-native speakers of English in the context of a
simulated job interview. The conversation is set up as a system-
initiated dialog in which a representative at a job placement
agency interviews the language learner about the type of job
they are looking for and their qualifications. The ultimate aim
of the task is to provide interactive feedback to language learn-
ers about whether they have demonstrated the linguistic skills
necessary to provide appropriate, intelligible responses to the
questions and to complete the communicative task successfully.

2.4. Scoring

In order to understand how well participants performed in our
conversational interview task, we had two human scorers lis-

5We partitioned the dataset in this manner in order to have as much
data as possible available for training robust language models

ten to participant responses corresponding to each dialog turn
in the train/test set and score them on the following three di-
mensions according to the rubric shown in Table 1: fluency,
pronunciation and intonation/stress. The scoring procedure was
as follows: both raters first provided independent ratings for
responses from a small number of conversations and then re-
viewed their ratings together to reach a consensus about any
discrepant ratings. They then proceeded to apply that scoring
process to the remaining conversations in the cross-validation
set. A subset of 33 conversations (365 utterances) were double-
scored; the remaining 90 conversations (1528 utterances) in the
cross-validation set received a score from one of the two raters.

3. Scoring Analyses and Experiments
This section first presents an analysis of how well non-native
English speakers performed on our deployed conversational
task. We then examine how well features that are currently
used in automated speech scoring research (covering diverse
measurements among lexical usage, fluency, pronunciation,
prosody, etc.) fare in automatically predicting human-rated
scores of speaker performance.
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Figure 1: Distributions of human ratings

3.1. Human Scoring Analysis

Figure 1 plots the distributions of various sub-scores assigned
by human raters (average ratings are presented for the responses
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that were double-scored). The scores are mainly distributed
across the 2− 4 range, with relatively few scores of 1. Also
note that a large number of utterances (> 400 per sub-score di-
mension) were marked unscorable (score of 0) owing primarily
to poor audio quality or unintelligible speech responses.

Table 2 lists the inter-rater correlations (ρR1R2 ) and
quadratic weighted kappa (κ) values computed on the scores
assigned by both our two human scorers (365 utterances). No-
tice that the ρR1R2 value for the three scoring dimensions lie be-
tween 0.54 and 0.61. The overall inter-rater agreement, as mea-
sured by κ , computed across all scoring sub-dimensions, was
0.49 (although this was not significant at the α = 95% level).
This indicates a moderate level of agreement between our two
raters, but more importantly, this underscores two possibilities.
First, scoring non-native dialogic responses is non-trivial and
potentially more challenging as compared to monologic coun-
terparts due to a variety of possible reasons, including, but not
limited to, the increased spontaneity of responses, greater oc-
currence of disfluencies, dependence of the learner’s responses
on the conversation history, and the short duration of each in-
dividual response. Second, the scoring rubric we used was not
optimized to this particular dialogic task. Having said that, this
type of study is an important first step towards developing a re-
fined rubric for scoring dialog constructed responses since there
is no defined state-of-the-art rubric for scoring such data. Go-
ing forward, the inter-rater agreement could be potentially im-
proved with additional rater training and calibration and having
more (than two) raters score the data.

3.2. Automated Scoring

With an understanding of the score distributions, we now move
on to experiments in automatically assigning such scores us-
ing machine learning techniques. Such methods could play an
important role in dialog management routines that direct and
adapt conversation flow, and eventually, toward automating the
process of scoring. Therefore, here we train regression models
to predict each of the average human sub-scores (listed in Table
1) assigned to all spoken constructed responses in our train/test
set in a cross-validation setup6.

For automatic scoring of these spoken constructed re-
sponses at each dialog turn, we extracted features that are cur-
rently used in automated speech scoring research, covering di-
verse measurements among lexical usage, fluency, pronuncia-
tion, prosody, and so on. In particular, following the feature
extraction method described in [16], we used SpeechRaterSM,
a speech scoring system that processes the speech signal and
its corresponding ASR output to generate a series of features
assessing multiple dimensions of speaking proficiency, e.g.,
speaking rate, prosodic variations, pausing profile, pronuncia-
tion, and vocabulary diversity. In total, 144 SpeechRater fea-
tures were included in this experiment. In the interest of brevity,
we do not discuss them in detail here; for more on these fea-
tures, refer to [16, 5, 17, 10]. The majority of SpeechRater
features leverage information derived by running the input au-
dio files through an automatic speech recognizer (ASR). It
therefore follows that in order to optimize the feature extrac-
tion process, we need to optimize the models that the ASR
leverages, in particular, its acoustic and language models. We
trained our acoustic model on 800 hours of non-native speech
data collected from TOEFL iBT test administrations. We used

6As described in Section 2.4, not all utterances received double hu-
man scores; in these cases, only a single human score was used for
training the model, not the average of two scores.

Table 2: Scoring prediction results for different machine learn-
ing regression models relative to the human agreement in terms
of quadratic-weighted Cohen’s kappa, κ and the inter-rater
correlation, ρR1R2 (Classifer acronyms are as follows: EN =
Elastic Net; RF = Random Forest Regressor; GB = Gradient
Boosting Regressor).

Scoring κ ρR1R2 Model Correlation
Dimension EN RF GB
Fluency 0.48 0.54 0.51 0.58 0.55
Pronunciation 0.54 0.61 0.51 0.56 0.54
Intonation/Stress 0.45 0.57 0.47 0.54 0.51

standard 13-dimensional MFCCs with deltas and delta-deltas
and 10ms shift. The final acoustic model is a p-norm DNN
[18] with 4 hidden layers, a dimensionality of the input/output
layer of 2000/250 and was trained in 8 epochs. The systems
phonetic alphabet is comprised of 42 basic tokens combining
39 true phonemes, and tokens for “silence”, “spoken noise”
and “noise”. Additionally, the final phonological tokens have
word position-specific modifiers for internal, singleton, word-
beginning and word-ending positions. We used a held out train-
ing set to train a 3-gram language model using modified Kneser-
Ney smoothing. The model has a perplexity of 46 on the test
data.

3.3. Machine Learning Experiments

We used SKLL,7 an open-source Python package that wraps
around the scikit-learn package [19] to perform machine learn-
ing experiments. We experimented with a variety of learners to
predict the various delivery scores, including regularized linear
regressors (Lasso [20] and Elastic Net [21]), tree-based regres-
sors (e.g., Random Forests [22]), and boosting-based learners
(e.g., Gradient Boosting [23, 24]), and report the results of the
best performing regression model from each learner type. We
used quadratic weighted kappa (which takes into account the or-
dered nature of the categorical labels) as an objective function
for optimizing learner performance. We further tuned and op-
timized the free parameters of each learner using a grid-search
method. We ran stratified 10-fold crossvalidation experiments,
where folds were generated to preserve the percentage of sam-
ples in each class. The experiments looked at only audio files
at the level of each dialog turn. Also, note that we only exam-
ined data from individual utterances that were assigned ratings
between 0 and 4.

3.4. Observations and Results

As shown in Table 2, we generally observed that Random For-
est learners significantly outperform regularized linear regres-
sors such as the Elastic Net8 across the board. In addition, the
performance of the automated scoring models were generally
comparable to the inter-rater correlations,9 ρR1R2 , indicating
that the SpeechRater features are able to capture the speaking
proficiency characteristics in the rubrics that were applied by

7https://github.com/EducationalTestingService/skll
8The Elastic Net generally outperformed other learners in this cat-

egory such as Support Vector Regression or Lasso (which is a special
case of the Elastic Net with a zero L2 regularization or ridge regression
penalty term) and hence we only show the performance of the Elastic
Net here.

9Note that the sample sizes for the model correlation and inter-
rater correlation results differ, since not all responses were rated by two
raters, as described in Section 2.4.
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Table 3: Top 5 features which are most correlated with scores (excluding 0 scores).

Fluency Pronunciation Intonation/Stress
Feature selected ρ Feature selected ρ Feature selected ρ

1 Duration-normalized number of
types

0.34 Duration-normalized number of
types

0.20 Duration-normalized number of
types

0.17

2 Number of words per second 0.30 Content vector analysis score 0.19 Number of words per second 0.15
3 Duration-normalized number

of types (excluding pauses and
disfluencies from duration)

0.24 Unweighted average confidence
score

0.19 Duration-normalized number
of types (excluding pauses and
disfluencies from duration)

0.11

4 Acoustic model score 0.22 Confidence score per second 0.18 Content vector analysis score 0.09
5 Average rank of word types in the

response
0.21 Type to token ratio 0.17 Proportion of types in response vs.

reference list of academic vocabu-
lary

0.08

the human raters.
In order to understand why SpeechRater features performed

well, we examined the five features that were most correlated
with the delivery scores along each dimension (see Table 3).
We observe that delivery-oriented features such as the duration-
normalized number of types and word rate, as well as the acous-
tic model score, are highly correlated with fluency scores. How-
ever, while the confidence score-based features are potentially
useful measures of pronunciation, it is not clear that the other
features directly inform pronunciation or intonation subscores.
In these cases, it is likely that different sub-scores are likely to
be correlated, allowing one to achieve a reasonable predictive
power by measuring aspects of proficiency which are not actu-
ally relevant to that subscore.

4. Discussion
While the results presented are very encouraging, it is impor-
tant that we also look at some open questions and limitations.
This study has looked at one conversational task – a job in-
terview – in depth, and has demonstrated the efficacy of the
HALEF dialog-based framework in eliciting speech from non-
native English speakers while maintaining favorable user expe-
rience. However, one should note that this is but one version
of the task that caters to speakers of a moderate conversational
proficiency level, and may not be as useful to learners at other
levels, novice speakers, for example. For this reason, we aim
to broaden the scope of the interview task going forward, for
instance, by creating multiple versions of the task to cater to
populations at different proficiency levels. Also, we have ana-
lyzed only one task in detail here – and while that is already an
important step considering the lack of related work in this par-
ticular area – in order to get a better idea of how people respond
to different scenarios we will need to deploy and analyze more
conversational tasks, and collect data from a larger sample of
language learners.

Another important set of observations have to do with the
rubric used for scoring. As we pointed out earlier, while
the rubric used was designed for long constructed spoken re-
sponses, it does not explicitly consider the dialogic nature of
many conversational responses. In other words, the length,
complexity, and appropriateness of each response may depend
on the conversation history to varying extents. This is a fac-
tor we will consider in designing rubrics for future scoring re-
search.

For automatic scoring and rating prediction experiments,
we looked at three primary classes of learners – regularized lin-
ear, tree-based and boosting-based. While these were chosen
primarily for interpretability (which becomes more crucial for
high-stakes assessment) and for the sake of comparison with ex-

isting state of the art in automated scoring, this particular study
has not examined how well cutting-edge deep neural networks
(DNNs) perform on the same task. While these networks suffer
from the drawback of being relatively uninterpretable, they have
significantly outperformed other machine learning methods on
tasks in the speech, vision and language processing community.
For this reason, we will look at how well DNNs perform on
automatic scoring and rating tasks as part of future work.

5. Summary and outlook
This paper has presented a methodology and framework for
computer assisted language learning of conversational English
based on spoken dialog. The framework leverages the HALEF
open-source modular standards-compliant dialog system de-
ployed in a crowdsourcing data collection paradigm to obtain
conversational data from potential English language learners,
i.e., non-native speakers of English. We had human raters score
the utterances on three dimensions representing speech delivery
that are important in conversational proficiency assessment. We
then extracted curated speech features based on the SpeechRater
engine, and showed that these features, when fed into trained
machine learning models, are able to automatically predict the
human scores at a level that is comparable to human agreement.

Future research and development will look at standardiz-
ing and extending the analyses presented in this paper to a
wider variety of conversational tasks and non-native speakers
of varying proficiency levels. Technology-wise, we would like
to make the conversational tasks truly multimodal, with sup-
port for video and text, and perhaps simulated environments
and virtual avatars, to allow for a more immersive interactive
experience. Yet another area of future work is the iterative re-
finement of the scoring rubrics to better suit dialog and con-
versational data, such that we adequately capture the various
sub-dimensions that contribute to a language learner’s conver-
sational speaking proficiency.
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