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Abstract 
Identifying a speaker’s native language with his speech in a 
second language is useful for many human-machine voice 
interface applications. In this paper, we use a sub-phone-based 
i-vector approach to identify non-native English speakers’ 
native languages by their English speech input. Time delay 
deep neural networks (TDNN) are trained on LVCSR corpora 
for improving the alignment of speech utterances with their 
corresponding sub-phonemic “senone” sequences. The 
phonetic variability caused by a speaker’s native language can 
be better modeled with the sub-phone models than the 
conventional phone model based approach. Experimental 
results on the database released for the 2016 Interspeech 
ComParE Native Language challenge with 11 different L1s 
show that our system outperforms the best system by a large 
margin (87.2% UAR compared to 81.3% UAR for the best 
system from the 2016 ComParE challenge). 
Index Terms: time delay deep neural network, i-vector, native 
language identification 

1. Introduction 
Native Language Identification (NLI) is to identify the native 
language (L1) of a speaker, based upon his voice or written 
input in a second language (L2). Accurate L1 detection is 
critical for many human-machine voice interface applications, 
e.g., to engage a non-native user with a different language 
background. In Computer Assisted Language Learning (CALL) 
systems, the common pronunciation errors made by L1 learners 
are used to build an L1-L2 phone confusion table, which is 
useful for designing more customized pronunciation training 
[1]. Also, L1 information of speakers has been utilized to 
improve frame phonetic accuracy through multi-task learning 
and the performance of DNN-based speaker recognition can be 
significantly improved [2]. In addition, the knowledge of L1 
can aid an automatic speech recognition system to build better 
acoustic and language models, e.g., modeling pronunciation 
variation mapping between native speakers and L1-specific 
speakers [3], which can yield reliable recognition performance. 
It also can facilitate a human-machine dialog system, which can 
be aware of a user’s cultural background suggested by the 
identified native language. 

NLI works under the assumption that a speaker’s L2 
production patterns are influenced by his L1 origin. Many 
Chinese ESL learners confuse English /r/ with /l/ and 
sometimes with /w/ since the distinctions do not exist in quite a 
few Chinese dialects, or their native L1 languages. Appending 
an extra vowel to a consonant at the end of a syllable is common 
among Japanese English speakers. It is due to the fact that 

Japanese syllable structure only allows a vowel ending except 
a final /n/. Foreign language learners with different native 
language background do make different errors in grammar, 
vocabulary and other usage in learning a new language [4, 5].  

The approaches to automatic NLI are usually based on 
supervised learning where statistical models, e.g., SVM and 
GMM classifier, are trained on data labelled with corresponding 
L1 information. The features extracted from ESL learners’ 
writings are generally based on lexicon and syntax, including 
N-gram features on character, word and part-of-speech (POS), 
Stanford dependencies [6], and spelling and grammatical errors, 
while the features obtained from learners’ speech for NLI can 
be frame-level like MFCC, phone-level confusion, and lexical 
features like language use error. The latter of the two kinds of 
features needs to be supported by a speech recognizer with 
either a phone-loop grammar or language model. The NLI 
shared task [7] hosted by the BEA workshop at NAACL 2013 
and Computational Paralinguistics Challenge  (ComParE) [8] at 
INTERSPEECH 2016 show that automatic NLI methods can 
achieve 84% and 81% accuracy in detecting L1 from 11 
different L1 backgrounds based on writing and speech, 
respectively.   

Our study focuses on how to predict L1 from nonnative 
speakers’ English speech input, similar to recognizing the 
spoken language or speaker. The following approaches: GMM-
UBM+MAP, GMM-UBM+SVM, and i-Vector are fairly 
successful in recognizing speaker and language identity, and 
can be similarly applied to NLI. Phone-level features, one of the 
key clues for human listeners to detect a speaker’s native 
language, have been proposed to improve the performance of 
NLI systems. In [9], a phonetically-inspired UBM by clustering 
the Gaussian components of the acoustic model built for ASR 
is integrated into an SVM-based classifier with ASR-based 
features and the best published results on the Foreign Accented 
English (FAE) database [10] is reported. The ComParE 
participants’ systems based on the i-Vector approach can all 
achieve approximately 70% or more on accuracy for 
identification of 11 L1 languages. Log-likelihood ratios of 
phone posterior probabilities (PLLR) in four language-
dependent phonetic decoders are used to extract the i-vectors in 
[11]. This PLLR based i-vector system is fused together with 
the MFCC feature based i-vector system at the scoring level and 
achieves the best performance in ComParE. Various features at 
the frame, phone and lexical levels, multiple classifiers, SVM, 
PLDA and DNN, and fusion at both feature and score levels are 
investigated in detail [12]. The performance of the final fused 
system is just slightly worse than the best system. 

A language learner’s mispronunciation patterns are often 
concentrated across two or three confusable canonical phones. 
A finer, sub-phonemic analysis can provide a higher resolution 
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than that of a coarser, phonemic counterpart. In this paper, the 
sub-phonemic “senone” modeling are adopted for extracting i-
vector which, hopefully, can enhance NLI performance. 
Motivated by the advancement of the phonetically-aware deep 
neural network based ASR, e.g. DNN, RNN and TDNN, and its 
advantages in high performance i-vector based speaker and 
language recognition [13-17], we used TDNN to build UBM in 
our i-vector based NLI system. To the best of our knowledge, 
this is the first time exploring TDNN based i-vector for NLI. 

2. TDNN based I-Vector for NLI 

2.1. I-Vector Front-end 

I-vector, a compact representation of a speech utterance in a 
low-dimensional subspace, is based upon the concept of factor 
analysis. An i-vector model [18], the t-th frame of the u-th 
segment, (u)

tx , is sampled from the following distribution: 
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where mk and Σk are the mean and covariance of the k-th 
Gaussian component if universal background model (UBM) is 
trained by GMM; Tk , called the total variability, is  a low rank 
rectangular matrix; (u)�  is the segment-specific standard 
normal distributed latent vector. The i-vector of segment u can 
then be estimated as 
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where N(u)  and F(u)F(u) are the zeroth-order and mean shifted 
first order statistics, respectively. 
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(u)
kt�  is the statistical alignment result of the frame (u)

tx , i.e., 
posterior probability calculated from a UBM.  

2.2. TDNN for Extracting Sufficient Statistics 

A DNN can model a long time-span, as well as high 
dimensional and correlated features. Except using a long 
acoustic context, e.g., 21 frames MFCC, as input feature 
representations to model the temporal dynamics, the neural 
network architecture also can capture the long-term temporal 
dependencies between the sequential events. A time delay deep 
neural network (TDNN) [19, 20] has such an architecture 
designed to work on sequential data. A TDNN is formulated as 
a feedforward network but it has delays on the layer weights 
associated with the input weights. The data are represented at 
different time points by adding a set of delays to the input. This 
allows the TDNN to have a finite dynamic response to time 
series input data [21]. A TDNN is similar to convolutional 
neural networks (CNN), where the convolution is done only 
along the time axis. 

Recently, TDNNs have been shown to outperform DNNs 
for LVCSR and speaker recognition [22, 14]. The subsampling 
technology, in which hidden activations are computed at only 
few time steps, has been proposed and largely speeds up the 
training time of TDNNs [22]. This allows TDNNs to be more 
attractive than recurrent neural networks (RNNs), which also 

can capture temporal dynamics by using internal memory to 
process arbitrary sequences of inputs, but the training is more 
time consuming.  
      In our study, a TDNN is used as UBM and employed to 
extract Baum-Welch statistics, i.e. the TDNN, replacing the 
GMM, is used to compute frame posterior probabilities over 
each of the classes (sub-phones, senones, instead of the 
components of GMM). Given TDNN-UBM, the (u)

kt�  is 
computed from “soft-max” output of TDNN. 

 (u) (u)( | )kt k tp s x� � (u) )(u)  (6) 

where ks  is the k-th senone and (u)
tx(u)
tx is spliced input vector. 

A TDNN models phonetic units, senones, in a supervised 
manner. It  allows the comparison among different utterances at 
the same senone set and then makes it easier to distinguish one 
L1 from the others by comparing GMM-UBM, in which the 
classes may be phonetically indistinguishable due to the 
unsupervised training approach. In addition, even if a TDNN 
and a GMM are both trained in a supervised manner, the TDNN 
can capture much more temporal dynamics and estimate model 
parameters discriminatively, which can lead to more accurate 
posterior estimation than for a GMM. 

2.3. L1 Recognition 

L1 recognition is performed with Probabilistic Linear 
Discriminant Analysis (PLDA) scoring [23].  Given an i-vector 

(u) / (u)ul � �� (u) / (u)�(u) / ( extracted from u-th testing utterance after 
length normalization [24], the log likelihood ratio (LLR) is 
calculated for ul and each i-vector, jl , of  target L1s,

1{ ,..., }j Nl l l	 and N is the total number of L1s, then select one 
with highest value as recognized L1. 
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where s
 is the hypothesis that jl and ul share the same L1 

identity while d
 is the hypothesis that jl and ul are from 
different L1 identities.  

3. Experiments and Results 

3.1. Corpora 

Our approach of TDNN based i-vector for L1 recognition is 
mainly evaluated on a Non-Native Spoken English (NNSE) 
Corpus [8]. Another two corpora: LibriSpeech [25] and AELP 
(Assessment of English Language Proficiency) are employed to 
train the TDNN to create sufficient statistics for i-vector 
extraction. 

NNSE corpus is provided by Educational Testing Service 
(ETS) as the Native Language (N) sub-challenge corpus for 
ComParE Challenge at Interspeech 2016 [8]. This corpus 
consists of spoken responses provided during a global 
assessment of English language proficiency. It contains 64 
hours of speech sampled at 16 kHz from 5,132 non-native 
speakers of English, with 11 different L1 backgrounds: Arabic 
(ARA), Chinese (CHI), French (FRE), German (GER), Hindi 
(HIN), Italian (ITA), Japanese (JAP), Korean (KOR), Spanish 
(SPA), Telugu (TEL) and Turkish (TUR). Each L1 is covered 
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by speech recordings from over 450 speakers. Each speaker’s 
recording (one utterance) is roughly 45 seconds long. The 
dataset was divided into three partitions: training (3,300 
utterances, ~41.3 hours), development (965 utterances, ~12.1 
hours) and testing (867 utterances, ~10.8 hours) 

Librispeech corpus is a free corpus of read English speech 
derived from LibriVox’s audiobooks containing approximately 
1,000 hours of speech sampled at 16 kHz. The speakers’ accents 
are various and not marked, but the majority are US English. 
The acoustic model trained on this corpus shows a high 
resolution on U.S. English speech recognition, i.e., less than 7% 
WER on the test sets of the WSJ corpus [22].  All three training 
sets, approximately 960 hours, collected from 2,338 speakers, 
with normalized text of audiobook are employed to train the 
TDNN. 

AELP Corpus consists of 800 hours of speech from 8,700 
test-takers over 100 countries. It is also drawn from the English 
proficiency assessment, administered a different year than the 
NNSE Corpus. Each speaker has 6 utterances, i.e., 45-second 
spoken responses to express their opinions on a familiar topic 
or 60-second spoken responses based on reading and listening 
to relevant prompt materials, yielding roughly 5 minutes per 
speaker. All the recordings and corresponding manual 
transcriptions are used for training the TDNN. The metadata, 
including country information, is not used for training. 

3.2. Experimental Setup 

NLI systems are constructed by using the tools from Kaldi [26]. 

3.2.1. GMM based i-Vector (Baseline) 

The front-end for the baseline NLI system contains 20 
dimensional MFCCs including C0, extracted from a 20ms 
hamming window with 10ms time shift along with their first 
and second derivatives. Non-speech segments within utterances 
were deleted through an energy-based voice active detection 
(VAD) method. Utterance-based cepstral mean normalization 
was performed on the acoustic feature vectors. A GMM and a 
full covariance matrix was trained as the UBM by using the 
training set of the NNSE corpus. The same training set was also 
used to train an i-vector extractor T-matrix as well as PLDA 
projection matrices. The number of Gaussian components and 
the dimension of i-vector are optimized on NNSE development 
set. 

3.2.2. TDNN based i-Vector 

40-dim MFCCs are used as input features to train the TDNN. 
Speaker adaptation techniques like transforming acoustic 
features by fMLLR and appending i-Vector with input features 
are not employed here. TDNN architecture is similar to the one 
described in [22]. The context specification of the TDNN is 
configured as: input layer {-2,2} indicating 5 frames (t-2, t-1,    
t, t+1, t+2) spliced, then three hidden layers splicing as {-1,2}, 
{-3,3} and {-7,2}. The output layer of the TDNN has 5,809 and 
4,057 nodes for Librispeech and AELP, separately. The output 
nodes are the “senones” of HMM got by decision-tree based 
clustering. The input and output feature pairs are obtained 
through frame alignment for the “senones” with GMM-HMM, 
which are also trained by LibriSpeech and AELP, separately. 
The i-vector extractor, T-matrix, and PLDA projection matrices 
are trained by different corpora to evaluate their performance. 

3.3. Results and Analysis 

The performance of NLI systems are evaluated in both accuracy 
(Acc) and Unweighted Average Recall (UAR), same as the 
metrics used by ComParE. 

Table 1 shows the baseline system performance in terms of 
Acc and UAR with different dimensions of i-Vector and 
number of Gaussian components on the development set. It 
indicates that 600-dim i-Vector extracted from the posterior 
supervector of GMM with 1,024 Gaussian components can 
achieve the best performance. These results are similar to those 
that the Challenge systems [11,12] obtained, i.e., approximately 
76% for both UAR and Acc by only using corpus, NNSE, 
provided by ComParE organizers. Thereafter, the dimension of 
i-vector is fixed to 600. 

Table 1: Acc and UAR obtained by the baseline system on the 
development set 

Systems Acc (%) UAR(%) 
iVec400_GMM1024 73.8 73.9 
iVec600_GMM1024 75.6 75.7 
iVec800_GMM1024 75.3 75.5 
iVec600_GMM2048 72.8 72.9  
The performance of the NLI systems on the development 

set is presented in Table 2, which also shows the corpora used 
to train individual modules: UBM (Supervector), T-matrix and 
PLDA. Motivated by the performance improvement of using 
super large datasets to train the T-matrix and PLDA in text-
independent speaker recognition, we tried to use the AELP 
corpus to train the T-matrix by assuming each utterance is from 
one L1 since no L1 info is available. But the performance is 
slightly worse than that T-matrix trained by the NNSE corpus. 

Table 2: Acc and UAR obtained by different NLI systems on the 
development set 

UBM T-matrix PLDA Acc (%) UAR(%) 
NNSE NNSE  NNSE 75.6 75.7 

Librispeech NNSE NNSE 84.1 84.3 
AELP NNSE NNSE 88.6 88.6 
AELP AELP NNSE 88.1 88.2 
 
Table 3 lists Acc and UAR obtained by different NLI 

systems on the test set. TDNN based i-Vector significantly 
outperforms the GMM based i-Vector. The systems, 
TDNN_Librispeech and TDNN_AELP (i-Vector from TDNN 
trained by LibriSpeech and AELP corpora) can achieve 
improvements of 8.1% and 12.5% on Acc, 8.2% and 12.5% on 
UAR over the baseline system. TDNN_AELP can increase the 
performance, 4.4% on Acc and 4.3% on UAR, by comparing 
with TDNN_Librispeech. TDNN trained by AELP, which 
contains much more sub-phone variation caused by speakers 
from different countries, should have a much higher sub-phone 
resolution than TDNN trained by Librispeech recorded 
dominantly by U.S. English speakers, and thus is more capable 
of capturing L2 spoken English patterns influenced by 
speakers’ language backgrounds. The UBM trained by the 
DNN is also listed in Table 3 as a performance comparison 
between the TDNN and the DNN. DNN also has three hidden 
layers but each layer consists of 1,024 nodes. The input features 
is also 40-dim MFCCs but stacked over a 21 frame window (10 
frames to either side of the center frame). It shows that TDNN 
outperforms DNN by over 1% on both Acc and UAR.  
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To back the above suppositions, we transcribe the test set 
of NNSE and use TDNN_Librispeech, TDNN_AELP and 
DNN_AELP as AMs to decode it. The corresponding frame 
accuracy, which is often used to evaluate the performance of a 
DNN by isolating the issues caused by the vocabulary and the 
language model in the ASR system, is shown in Table 4. It 
indicates that the frame accuracy of models trained by AELP is 
much higher than that trained by Librispeech. The TDNN 
outperforms the DNN, i.e., the frame accuracy on the test set is 
improved from 48.5% to 51.3%.  

Table 3: Acc and UAR obtained by different NLI systems on the 
test set 

 Acc (%) UAR(%) 
Baseline  74.6 74.7 

TDNN_LibriSpeech 82.7 82.9 
TDNN_AELP 87.1 87.2 
DNN_AELP 85.9 86.1  

Table 4: Frame accuracy of different UBMs on the testing set  
 TDNN_Librispeech   TDNN_AELP DNN_AELP 
Acc (%) 38.7 51.3 48.5 

 
Our best results are at 87.1% in Acc and 87.2% in UAR, 

which are significantly better than those achieved by the best 
system (L2F) in ComParE. L2F achieved 81.3% UAR, assisted 
by the ASR systems for European Portuguese, Brazilian 
Portuguese, European Spanish and American English to 
calculate PLLR features based i-vector [11]. Our system with 
TDNN based i-Vector trained by Librispeech can achieve 
82.9% UAR, which is 1.6% better than the L2F system which 
fuses two i-vector based systems. In [12], Librispeech is also 
used to train a phone recognizer for extracting L1-
pronunciation projection features which are used for i-vector 
extraction. The fusion system achieves 79.9% Acc and 80.1% 
UAR. No single system performance on the test set is available 
in the publications, so it is difficult to conclude whether our 
system built on Librispeech significantly outperforms each 
individual system used for fusion. Fusion approach can be 
further investigated via our approach in the future.  

Confusion matrix of the best results on the test set is shown 
in Table 5. The most confusable classification are between 
Hindi and Telugu, which are both languages used in India. 
Similar observations were found in the systems reported in [11, 
12], although with a lower count. 

3.4. Large-scale L1 Recognition 

In order to evaluate the performance of the NLI system in a 
more realistic context with a broader range of L1s, we further 
evaluated it on a data set containing 25 L1 languages. The data 
set with those additional 14 L1 languages is smaller than those 
11 L1 languages. The dataset consists of 3,000 responses (120 
for each L1) used for training and 750 responses (30 for each 
L1) employed for testing. Each response is roughly 45 seconds 
long. There are no overlapped speakers between the training 
and test sets. Figure 1 depicts the performance in terms of Acc 
obtained by baseline and our approach for 25 L1s identification 
along with those of 11 L1s identification with different training 
sizes. Our approach significantly outperforms the baseline for 
all the configurations. 

With more training data, performance of both the baseline 
(NLI11_baseline) and our approach (NLI11_TDNN) for 11 L1s 

recognition is continuously improved. The best performance 
does not seem to converge with 800 responses, i.e., roughly 10 
hours per native language, for training. The performance of our 
approach on recognizing 25 L1s (NLI25_TDNN) is largely 
degraded to 60.1% Acc. We think it is mainly caused by limited 
training data for those 25 L1 NLI. A 10.1% accuracy reduction 
is observed for 11 L1 NLI when the training size is decreased 
from 300 to 120 responses per L1. Approximately 60% 
accuracy for 25 L1 recognition has ever been reported in [9] but 
the system is evaluated on fisher and the foreign-accented 
English (FAE) databases. Their system and our system, cannot 
be compared, since different databases were used for training. 
However, the relative low performance of large-scale NLI is 
still challenging and justifies further investigations.  

Table 5: Confusion matrix of the best results (Acc=87.1% and 
UAR=87.2%) on the test set (rows: references; column: 
hypotheses) 
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ARA 65 1 3 1 1 1 6 0 1 0 1 
CHI 0 67 0 3 0 0 1 3 0 0 0 
FRE 3 1 65 2 0 0 0 1 4 1 1 
GER 0 0 1 73 0 0 0 0 1 0 0 
HIN 1 0 0 0 63 0 0 0 0 18 0 
ITA 1 0 1 1 0 58 0 0 7 0 0 
JPN 1 0 0 0 0 0 70 3 1 0 0 
KOR 0 7 0 0 0 0 5 67 1 0 0 
SPA 0 1 2 1 0 2 1 1 69 0 0 
TEL 0 0 0 0 16 0 0 0 0 72 0 
TUR 2 2 0 0 0 0 0 0 0 0 86 
 

 
Figure 1: Performance obtained by baseline and our approach 
for 25 L1s along with those of 11 L1s with different training 
sizes. 

4. Conclusions 
TDNN and LVCSR corpora collected worldwide are explored 
for improving sub-phone modeling so as to enhance native 
language identification performance, based upon a non-native 
English speaker’s speech input. The NLI performance, 
measured in Acc and UAR, is improved significantly with the 
help of sufficient statistics extracted from the TDNN trained 
with the LVCSR corpus collected worldwide. Our future work 
will be on investigating the L1 recognition of more languages 
and the fusion of multiple systems with different features and 
classifiers. 
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