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Abstract

Healthcare professionals spend a significant amount of their
time on administrative tasks rather than direct patient care. One
effective way to alleviate some of this burden is to employ a
medical scribe, who charts patient-physician encounters in real
time. We present a complete implementation of an automated
medical scribe assistant, which listens to the encounter and pro-
duces a draft of report text and the information used to create
it, which can dramatically streamline the scribe’s task. This
system is, to our knowledge, the first automated scribe ever pre-
sented, and relies on multiple speech and language technolo-
gies, including speaker diarization, medical speech recognition,
knowledge extraction, and natural language generation.
Index Terms: speech recognition, speaker diarization, medical
speech, natural language processing

1. Introduction
A recent study concluded that primary care physicians spend
almost two hours on tasks related to electronic medical record
(EMR) systems for every one hour of direct patient care [1].
One strategy for reducing this overhead is to employ a medical
scribe: a clinical paraprofessional who interacts with EMR sys-
tems in real time during patient-physician encounters. Scribes
have been shown to save physicians substantial time, improve
their work-life balance, and enhance productivity [2]. Scribes
do have some disadvantages, however: a high rate of turnover,
as they tend to be students; extended training time required;
and cost [3]. To help offset these disadvantages, we have devel-
oped an automated scribe assistant that employs a full stack of
state-of-the-art speech and natural language processing compo-
nents to transform a recorded conversation into an initial draft
of a fully formatted report, which can be marked up and cor-
rected by human scribes. This proposed workflow is identical
to one frequently employed for transcribing dictated medical
notes, in which human transcribers mark up a draft produced by
speech recognition and formatting systems [4]. Our system has
the potential to substantially increase the throughput of human
scribes, making them a more affordable and attractive proposi-
tion for healthcare providers. To the best of our knowledge, this
is the first automated scribe implementation ever presented to
the scientific community.

The processing pipeline comprises four major stages:
speaker diarization, automatic speech recognition (ASR) [4],
knowledge extraction (KE), and natural language generation
(NLG). The goal of the latter two is exemplified in Figure 1,
in which a segment of a conversation is mined for appropriate
information used to produce a formatted section of report.

2. Speaker diarization

Speaker diarization is the “who spoke when” problem, also
called speaker indexing [5]. The input is audio features sam-
pled at 100 Hz frame rate, and the output is frame-labels in-
dicating speaker identity for each frame. Four labels are pos-
sible: speaker 1 (e.g. the doctor), speaker 2 (e.g. the patient),
overlap (both speakers), and silence (within-speaker pauses and
between-speaker gaps). Note that the great majority of doctor-
patient encounters involve exactly two speakers. Although our
method is easily generalizable to more speakers, we currently
report on the two-speaker problem.

The diarization literature broadly distinguishes “bottom-
up” vs. “top-down” approaches. The former [6] operate by
merging neighboring frames according to similarity (cluster-
ing); we found initial results unsatisfactory. The latter oper-
ate with a prior model such as HMM-GMM (Hidden Markov,
Gaussian mixture model) to represent the likely audio features
and timing (transition) characteristics of dialogs. We have in-
troduced our own top-down approach that utilizes a modified
expectation maximization algorithm at decoding time to learn
the current speaker and background silence characteristics in
real time.

Diarization requires an expanded set of audio features com-
pared to ASR. In ASR, only phoneme identity is of final interest,
so audio features are generally insensitive to speaker character-
istics. Also note that, as diarization performs a de facto speech
activity detection (SAD), features successful for SAD [7] are
helpful to diarization as well. Accordingly, we use an expanded
set of gammatone-based audio features for the total SAD + di-
arization + ASR problem.

3. Speech recognition

ASR operates on the audio segments produced by the diariza-
tion stage, where each segment contains one conversational turn
(1 speaker + possibly a few frames of overlap). Currently, the
diarization and ASR stages are strictly separated and the ASR
decoding operates by the same neural network (NN) methodol-
ogy that we recently reported for general medical ASR [4]. In
brief, the acoustic model (AM) consists of a NN trained to pre-
dict context-sensitive phones from the audio features; and the
language model (LM) is a 3- or 4-gram statistical LM prepared
with methods of interpolation and pruning that we developed to
address the massive medical-vocabulary challenge. Decoding
operates in real time by use of weighted finite-state transducer
methodology [8]. Our current challenge is in adapting the AM
and LM to medical conversations, which have somewhat differ-
ent statistics compared to medical dictations.
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Conversation Report
Dr: “okay great and in terms of your past medical history do you
have any other medical conditions you have”

FAMILY MEDICAL HISTORY
The patient’s aunt had lung cancer.

Pt: “no i have not had any medical conditions but my auntie actually
she had lung cancer so that’s why i kind of. . . ”

Figure 1: An excerpt from a typical input and output for the natural language processing stages of the scribe. Note that the ASR output
has no punctuation or case. The doctor (‘Dr.’) and patient (‘Pt.’) identifiers illustrate the contribution of speech diarization.

4. Knowledge extraction
The KE stage locates any relevant unstructured information in
the conversation and converts it into a structured representation.
Extracting information from spontaneous conversational speech
is a notoriously difficult problem. There has been some recent
work in this area, although it is unclear whether any known
methods are suitable to clinical conversation specifically. We
apply a novel strategy to simplify the KE problem by classifying
turns in the conversation based upon the information they likely
contain using hierarchical recurrent NNs. These classes over-
lap largely with sections in the final report—chief complaint,
medical history, etc.

We then apply a variety of information extraction strate-
gies on these sections of text, including: rule-based processing
to identify predictable elements (medication dosages, dates and
durations, certain ontology concepts); knowledge-based strate-
gies, such as calculating a phrase’s semantic overlap with dic-
tionary definitions, for concepts that can vary widely in expres-
sion (e.g., symptom descriptions); and fully supervised machine
learning approaches for difficult or highly specialized tasks—
e.g., identifying highly variable events such as symptoms gener-
ally worsening. This module also relies on extractive summary
techniques where necessary, in which entire sentences may be
kept if they refer to information that is relevant but is difficult
to represent in structured form—for example, a description of
how a patient sustained a workplace injury.

Keeping structured data as an intermediate output has a
number of advantages. Most relevantly to our system, it al-
lows a human scribe to see what information the system has
detected and amend it directly if necessary. Structured data can
also be kept to assist in transcribing later visits by the same pa-
tient or for use by other systems that read structured data (e.g.,
billing systems, decision support). Wherever possible, data is
encoded in structures compatible with common medical infor-
matics standards to facilitate interoperability.

5. Natural language generation
The NLG module produces and formats the final report. Medi-
cal reports often follow a loosely standardized format: sections
appear in a generally predictable order and have well-defined
scope. Our strategy is a data-driven templatic approach in con-
junction with a finite-state “grammar” of report structure.

Sentence templates, annotated for the structured data types
necessary to complete them, constitute a sentence bank, which
we fill by clustering sentences from a large corpus of medical re-
ports according to semantic and syntactic similarity. Results are
manually curated to ensure that strange or imprecise sentences
cannot be generated and to ensure parsimony in the information
type system. (See Kondadadi et al. [9] for a similar method.)

Using the same corpus, we induce a document-level gram-
mar using a probabilistic finite-state graph, where each arc is
a sentence and a single path through the graph represents one

full report. Decoding jointly optimizes the maximal use of
structured data and the likelihood of the path. The grammar
helps to improve upon one common criticism of templatic NLG
approaches, which is the lack of variation in sentences [10],
in a way that does not require any “inflation” of the template
bank with synonyms or paraphrases. As note structure can vary
considerably between specialty and hospital, we build separate
NLG models to handle each type of output.

Finally, all notes pass through a processor that handles ref-
erence and anaphora (e.g., replacing references to the patient
with gendered pronouns), truecasing, formatting, etc.

6. Development status
Our system is currently in an early prototype stage, with all
modules functioning, but limited in scope. We will demon-
strate a full end-to-end system for patient–physician conversa-
tions captured in a general practitioner’s office.
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