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ABSTRACT
In speech recognition, vocal tract length normalization
(VTLN) is a well-studied technique for speaker normaliza-
tion. As voice conversion aims at the transformation of a
source speaker’s voice into that of a target speaker, we want
to investigate whether VTLN is an appropriate method to
adapt the voice characteristics. After applying several con-
ventional VTLN warping functions, we extend the piece-
wise linear function to several segments, allowing a more
detailed warping of the source spectrum. Experiments on
voice conversion are performed on three corpora of two lan-
guages and both speaker genders.

1. INTRODUCTION

Vocal tract length normalization [1] tries to compensate for
the effect of speaker dependent vocal tract lengths by warp-
ing the frequency axis of the amplitude spectrum. In speech
recognition, VTLN aims at the normalization of a speaker’s
voice in order to remove individual speaker characteristics.

A similar task is voice conversion. It describes the mod-
ification of a source speaker’s voice such that it is perceived
to be spoken by a target speaker [2]. In this paper, we show
how VTLN can be applied to this task.

In Section 2, we delineate a method to find correspond-
ing speech segments respectively artificial phonetic classes
in the training material of the source and the target speaker.
These corresponding classes are used to estimate the param-
eters of class-dependent VTLN warping functions. Subse-
quently, in Section 3, we apply this training procedure to
conventional warping functions depending on only one pa-
rameter.

Often, these conventional functions do not sufficiently
model the speakers’ characteristics. Therefore, we intro-
duce a piece-wise linear warping function consisting of sev-
eral linear segments. The greater the parameter number is,
the more carefully we must deal with their practical estima-
tion. All these considerations are discussed in Section 4.

Since the parameter estimation for classes with only few
observations can be very inaccurate and, besides, we do not

want the parameters to change abruptly from one class to
another, in Section 5, we introduce two parameter smooth-
ing methods. Finally, in Section 6, we present experimental
results on three German and English corpora.

2. AUTOMATIC SEGMENTATION AND MAPPING

Most of the training procedures of state-of-the-art voice con-
version techniques require training data containing the same
utterances of both source and target speaker [3]. Besides,
these utterances should feature a high degree of natural time
alignment and similar pitch contour [4].

However, in several voice conversion applications (e. g.
spontaneous speaker adaptation or speech-to-speech trans-
lation) we do not possess corresponding time frames of
source and target speaker. In [5], we address this problem
as follows.

At first, we subdivide speech material of speakerS and
T into KS respectivelyKT artificial phonetic classes. This
is done by clustering the frequency spectra of period-syn-
chronous frames obtained by a pitch tracker. For unvoiced
signal parts, pseudo periods are used. Now, for each source
classkS we determine the most similar target classk̂T (kS).
This class mapping is basis for an arbitrary statistical voice
conversion parameter training.

2.1. Statistical Voice Conversion Parameter Training

Let XI
1 = X1, . . . , XI be the spectra belonging to source

classkS and Y J
1 those of the mapped clasŝkT (kS), we

generally estimate the parameter vectorϑ by minimizing
the sum of the euclidean distances between all target class
spectra and transformed source class spectra. Here, we uti-
lize the spectral conversion functionFϑ′ depending on the
parameter vectorϑ′.

ϑ = arg min
ϑ′

I∑

i=1

J∑

j=1

∫ π

ω=0

|Yj(ω)− Fϑ′(Xi, ω)|2 dω (1)

In conjunction with a suitable smoothing technique, we of-
ten can neglect the variety of the classes’ observation spec-



tra by introducing a mean approximation without an essen-
tial effect on the voice conversion parameters.

ϑ = arg min
ϑ′

π∫

ω=0

∣∣Ȳ (ω)− Fϑ′(X̄, ω)
∣∣2 dω (2)

Here,X̄ and Ȳ are the source and target classes’ average
spectra.

3. WARPING FUNCTIONS WITH ONE
PARAMATER

In speech recognition, several VTLN warping functions
have been proposed whose parameters usually are limited
to one variable, the warping factorα. Established warping
functions are

• the symmetric piece-wise linear function with two seg-
ments [6]

ω̃α(ω) =
{

αω : ω ≤ ω0

αω0 + π−αω0
π−ω0

(ω − ω0) : ω ≥ ω0

(3)

ω0 =

{
7
8π : α ≤ 1
7
8απ : α ≥ 1

• the power function [7]

ω̃α(ω) =
(ω

π

)α

• the quadratic function [8]

ω̃α(ω) = ω + α

(
ω

π
−

(ω

π

)2
)

• the bilinear function [9]

z̃α(z) =
z − α

1− αz
with z = eiω (4)

In order to estimate the class dependent warping factorα,
we use Eqs. 1 or 2, where

Fα(X, ω) = X(ω̃α(ω)). (5)

4. WARPING FUNCTIONS WITH SEVERAL
PARAMETERS

4.1. Piece-Wise Linear Warping with Several Segments

One of the adversarial properties of the conventional warp-
ing functions with one parameter is that the whole frequency
axis is always warped in the same direction, either to lower
or to higher frequencies. Consequently, these functions are

not able to model spectral conversions where certain parts
of the axis move to higher frequencies, and other parts to
lower frequencies, or vice versa. Such functions would re-
quire at least one inflection point and would cross theω̃ = ω
diagonal.

Applying the VTLN technique to voice conversion, we
want to use more exact models than in speech recognition,
i. e. warping functions with several parameters, for a better
description of the individual characteristics of the speakers’
vocal tracts.

Assuming there is an ideal warping function for a given
class pair(kS , k̂T ), an obvious model is given by the in-
terpolation of this function by several linear segments, as a
consequence from the simple two-segment linear warping,
vide Eq. 3.

ω̃ω̃S
1
(ω) =





ω̃0,ω̃1(ω) for 0 ≤ ω ≤ 1
S+1 · π

...
...

ω̃ω̃s,ω̃s+1(ω) for s
S+1 · π ≤ ω ≤ s+1

S+1 · π
...

...
ω̃ω̃S ,π(ω) for S

S+1 · π ≤ ω ≤ π
(6)

ω̃ω̃′,ω̃′′(ω) = ω̃′ +
(

S + 1
π

· ω − s

)
· (ω̃′′ − ω̃′)

0 ≤ ω̃1 ≤ · · · ≤ ω̃S ≤ π. (7)

This formula describes a piece-wise linear functionω̃(ω)
starting at(0, 0), ending at(π, π), and connectingS points
whoseω values are equidistantly distributed. The corre-
spondingω̃s are the parameters of the warping function.
The resulting function is monotonous according to Eq. 7, as
we do not want parts of the frequency axis to be exchanged.

4.2. Practical Parameter Estimation

In general, augmenting the number of parameters confronts
us with an increasing need of computation time. Particu-
larly, this is the case if the minimization of Eqs. 1 or 2 is per-
formed by calculating the distances for all possible param-
eter combinations concerning a certain resolution. This es-
timation method results in an exponential increase of com-
puting time in dependence on the number of considered pa-
rameters.

Viewing the definition of the piece-wise linear warping
function with several segments, cf. Eq. 6, we note that the
integrals used in Eqs. 1 and 2 can be rewritten as (also cp.
Eq. 5)

dω̃S
1

=

π∫

ω=0

∣∣∣Y (ω)−X(ω̃ω̃S
1
(ω))

∣∣∣
2

dω

=
S∑

s=0

s+1
S+1 ·π∫

ω= s
S+1 ·π

∣∣∣Y (ω)−X(ω̃ω̃s+1
s

(ω))
∣∣∣
2

dω .



This enables us to use dynamic programming for searching
the minimum distance and therewith the optimal parameter
vectorω̃S

1 .

5. PARAMETER SMOOTHING

5.1. Iterative Integrating Smoothing

Basis of the voice conversion technique delineated in this
paper is the automatic class segmentation and mapping de-
scribed in Section 2. In Figure 1, we show the time course
of the word “Arizona” and the corresponding classes for
KS = 8.

To avoid that the class-dependent voice conversion pa-
rameters jump at the class boundaries causing distinctly au-
dible artifacts in the converted speech, we introduce an inte-
grating parameter smoothing which iteratively adapts a pa-
rameter vector by adding a weighted mean of the chronolog-
ically neighbored vectors. Figure 2 shows the effect of this
smoothing technique for 5, 50 and 5000 iterations using the
symmetric piece-wise warping function described in Eq. 3.
If the number of iterations approaches infinity, we obtain a
constant function over the time representing the mean pa-
rameter vector.

5.2. Deviation Penalty

Viewing Figures 1 and 2, we note that for certain classes the
obtained parameter values highly deviate from the mean.
E. g. for kS = 7 we obtain anα less than 1, whereas the
particular voice conversion (female–male) should result in
values greater than 1. Considering the mean ofᾱ = 1.3,
the parameter values are to be controlled and, if necessary,
corrected towards the mean.

This is performed by applying the minimization Eqs. 1
or 2 a second time, having added a penalty term to the en-
closed integral. Both addends are normalized by their max-
imum and then weighted utilizing the real value0 ≤ λ ≤ 1
to adjust the penalty strength. Hence,λ = 1 does not in-
fluence the class parameters at all, whereasλ = 0 forces
all parameters to be equal to their meanϑ̄. An equilibrium
between both terms is to be aroundλ = 0.5.

In the following, we assumeX andY to have the unity
energyE0 in order to remove the dependence of the dis-
tances on the signal loudness.

dϑ = λ

π∫
ω=0

|Y (w)−X(ω̃ϑ(ω))|2 dω

max
X′,Y ′

π∫
ω=0

|Y ′(w)−X ′(ω)|2 dω

+(1− λ)

π∫
ω=0

(ω̃ϑ̄(ω)− ω̃ϑ(ω))2 dω

max
ϑ̄′,ϑ′

π∫
ω=0

(ω̃ϑ̄′(ω)− ω̃ϑ′(ω))2 dω
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Fig. 1. Automatic Class Segmentation for the Word “Ari-
zona”.

Fig. 2. Iterative Integrating Smoothing for Warping Func-
tions with One Parameter.

After calculating the maximal distance between arbitrary
complex spectraX ′ andY ′ respectively real warping func-
tionsϑ̄′ andϑ′, we obtain

dϑ =

π∫

ω=0

{
λ

4E0
|Y (ω)−X(ω̃ϑ(ω))|2

+
1− λ

π3
(ω̃ϑ̄(ω)− ω̃ϑ(ω))2

}
dω.

6. EXPERIMENTS

Several experiments have been performed to investigate the
properties of VTLN voice conversion with respect to the
warping functions discussed in this paper.



Three corpora of different languages and genders have
been applied:

[A] 3 English sentences of a female speaker,

[B] 10 German sentences of a male speaker (poems),

[C] 3 German sentences of a male speaker (news).

In the following, we report results for three combinations of
these corpora:

• F2M: female [A] is converted to male [B],

• M2F: male [B] is converted to female [A],

• M2M: male [C] is converted to male [B].

As error measure, we use the normalized class average dis-
tance

dcad =

KS∑
k=1

π∫
ω=0

∣∣Ȳk(ω)− X̄k(ω̃ϑk
(ω))

∣∣2

4KSE0
.

Again, X̄ and Ȳ are spectra with unity energyE0, conse-
quently, we have0 ≤ dcad ≤ 1 (cp. Section 5.2).

In Table 1, we show results for warping functions with
one parameter (cf. Section 3). In the third row the results
for the trivial solutionω̃ = ω, i. e. no warping at all, is
displayed to assess the absolutedcad values.

Table 1. Error Measure for Warping Functions with One
Parameter

class average distance[%]
warping function

F2M M2F M2M

no warping aa8.3aa aa13.2aa aa7.3aa
piece-wise linear 6.0 6.4 6.2
power 5.2 6.4 6.2
quadratic 5.4 7.8 6.2
bilinear 5.5 6.5 6.2

We note that the presented warping techniques do not
essentially differ, but nevertheless, in our experiments, the
power function consistently produced the best outcomes.
The most significant effect was achieved for male-to-female
voice conversion which is due to the large differences of the
vocal tract. Concerning the above results, the opposite case
is more complicated. This statement is also supported by
our next experiments dealing with the piece-wise warping
with several segments, vide Table 2

This table conspicuously demonstrates how the number
of free parameters affects the warping precision. IfS be-
comes the number of spectral lines of the compared spec-
tra, it passes into a variant of dynamic frequency warping
with certain constraints. Nevertheless, subjective tests have
shown, that excessively increasing the number of free pa-
rameters, results in an overfitting between source and target
spectra and therewith disturbs the naturalness of the output
speech.

Table 2. Error Measure for the Piece-Wise Warping Func-
tion with Several Segments

class average distance[%]
S

F2M M2F M2M

1 aa6.7aa aa7.6aa aa6.3aa
2 6.0 6.1 5.7
4 5.4 5.0 5.1
8 4.9 4.1 4.7
16 4.5 3.4 4.0
32 4.2 2.3 3.0
64 4.1 1.4 2.3

Future experiments are to investigate the consistency of
the above results on other corpora. Furthermore, the overfit-
ting effect is to be demonstrated using an adequate objective
error criterion.
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