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ABSTRACT

Recently, the speaker normalization technique VTLN (vo-
cal tract length normalization), known from speech recog-
nition, was applied to voice conversion. So far, VTLN has
been performed in frequency domain. However, to accel-
erate the conversion process, it is helpful to apply VTLN
directly to the time frames of a speech signal. In this pa-
per, we propose a technique which directly manipulates the
time signal. By means of subjective tests, it is shown that
the performance of voice conversion techniques based on
frequency domain and time domain VTLN are equivalentin
terms of speech quality, while the latter requires about 20
times less processing time.

1. INTRODUCTION

Vocal tract length normalization (VTLN) [1] tries to com-
pensate for the effect of speaker-dependent vocal tract
lengths by warping the frequency axis of the phase and mag-
nitude spectrum. In speech recognition, VTLN aims at the
normalization of a speaker’s voice to remove individual
speaker characteristics and, thus, improve the recognition
performance [2].

The same technique can be used for voice conversion [3],
which is the modification of a source speaker’s voice in or-
der to sound like another speaker [4]. For instance, voice
conversion is applied to speech synthesis systems to change
the identity of the system’s standard speaker in a fast and
comfortable way. Here, the process is not a normalization
(mapping of several speakers to a certain individual) but the
other direction (transforming a standard speaker to several
well-distinguishable individuals). This consideration led to
the term reverse VTLN when referring to the usage as voice
conversion technique [5]. To simplify matters, in the follow-
ing, we continue to utilize VTLN in connection with voice
conversion.

In speech recognition, most parts of the signal process-
ing are performed in frequency domain. Hence, VTLN is
applied to the frequency spectrum, cf. Section 2. In the fol-
lowing, we will refer to this technique as FD-VTLN (fre-
quency domain VTLN).

In contrast to speech recognition, concatenative speech
synthesis predominantly operates in time domain. For in-
stance, the concatenation of speech segments and the prosod-
ical manipulation (intonation, speaking rate, etc.) are of-
ten based on TD-PSOLA (time domain pitch-synchronous
overlap and add) [6]. The application of FD-VTLN to
speech synthesis requires the transformation from time to
frequency domain and the other way around using DFT (dis-
crete Fourier transformation) and inverse DFT, respectively.

However, when a speech synthesis system is to be used
inside an embedded environment, each negligible operation
must be avoided due to very limited processing resources [7].
This is the motivation why VTLN should be directly ap-
plied to the time frames of a signal processed by a speech
synthesizer before being concatenated and prosodically ma-
nipulated by means of TD-PSOLA. In the following, we
refer to this technique as TD-VTLN (time domain VTLN).
In Section 3, we describe how TD-VTLN can be derived
from FD-VTLN and address a computing time comparison
between both techniques.

The equivalence of FD-VTLN and TD-VTLN in terms
of voice conversion performance (speech quality and suc-
cess of the voice identity conversion) is investigated with
the help of subjective tests in Section 4.

2. FREQUENCY DOMAIN VTLN

2.1. Preprocessing

Since the advantages of pitch-synchronous speech modifi-
cation and analysis are well-studied, this approach has been
also successfully applied to voice conversion [8].

To extract pitch-synchronous frames from a given speech
signal, we use the algorithm described in [9]. In voiced
regions, the frame lengths depend on the fundamental fre-
quency, in unvoiced regions, the pitch extraction algorithm
utilizes a mean approximation.

By applying DFT without zero padding to the frames,
we obtain complex-valued spectra with distinct numbers of
spectral lines. In the following, these spectra are referred to
as X.
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Fig. 1. Warping the magnitude spectrum: an example

2.2. Warping Functions

The realization that the warping of the frequency axis of
the magnitude spectrum can lead to a considerable speech
recognition performance gain yielded several more or less
well-studied warping functions. They can be distinguished
regarding the number of parameters describing the particu-
lar function and their linearity or nonlinearity, respectively.
In Table 1, we show a categorization of the warping func-
tions used in literature.

In general, a warping function is defined as
w(wlér,&,...);0 < w,& < m, where &,&,,... are the
warping parametersand w is the normalized frequency with
7 corresponding to half the sampling frequency according
to the Nyquist criterion. In Figure 1, we show an example
source spectrum, a warping function and the resulting target
spectrum.

3. TIME DOMAIN VTLN

3.1. Choosing a Warping Function

When we apply VTLN to voice conversion, it does not play
an important role which particular warping function is
used since they result in very similar spectra [3]. Hence, the
converted speech of different warping functions is hardly

parameters || linear nonlinear

one e piece-wise linear with | e bilinear [10]
two segments e power [1]
—asymmetric [11] e quadratic [12]

— symmetric [13]

several e piece-wise linear with

several segments [3]

o allpass trans-
form [14]

Table 1. Categorization of VTLN warping functions
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Fig. 2. Example of a piece-wise linear warping function

perceptually distinguishable. At least, this statement is true
for remaining in the same row of Table 1. The effect of in-
creasing the number of warping parameters on the quality
and capability of VTLN-based voice conversion has not yet
been adequately tested.

In the following, we limit our considerations to the piece-
wise linear warping function with several segments that in-
cludes the two-segment function as a special case, cf. [3]:

O(wlw!, o) = qw+p; for w; <w<wip;i=0...1T
o)

Wit1 — w5 -
Bi = @ix1 — w41 and

with o = ——|
Wi41 — Ws
0=wy <wi < <wr <wryi =, for &; equivalent.

An example of this monotonous and bounded function is
displayed in Figure 2.

Now, we have a look at the warped spectrum X derived
from X applying the warping function ©. The following
relation holds:

X@w)=Xw = Xw=X@'w). @
Then, we determine the inverse function of @, cf. (1):
w—0
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This equation can be rewritten as
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Inserting (3) into (2) yields

I
X(w)ZX<w_ﬁl>R(aiw+ﬂi|wi,wi+1). (4)
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3.2. What Happens in Time Domain?
To answer this question, we exploit several properties of the
DFT, in particular, the scaling, shifting, convolution, and
linearity rule.

To begin with, we describe the first term in (4) in time
domain. Here, we use the time signal = from which the
spectrum X was computed by applying DFT:

X(w)=Flz()}w) =
u(t) = F! {X <°" - 5) } (t) = aeP'z(at) . (5)

The second term is transformed by means of the time cor-
respondance of the frequency domain rect function, cf. (3),

FHrect(w)}(t) = % sin <%> , (6)

where 7' is the time frame length. By again utilizing the
scaling and shifting rules, we obtain a rather complicated
term for the time correspondance r(¢) derived from
R(aw + 3).

In time domain, a multiplication between two spectral
functions corresponds to a convolution, thus we can connect
the results from (5) and (6) according to (4) as follows

£ {x(“’;ﬁ) -R(aw+ﬁ)}(t) = (wxn)(b). (@)

Finally, two points have to be taken into account:

e As (5) suggests, we still have a complex-valued time
signal after the convolution. This is due to the DFT that
delivers a symmetric magnitude and phase spectrum in the
range —m < w < . So far, we only have considered the
positive part of the frequency axis, but the steps described in
this section must also be applied to the negative part. Both
contributions obtained from (7) are then summed and result
in a real-valued time signal.

e Since we deal with discrete time signals, the scaling
z(at), cf. (5), is carried out by means of cubic spline in-
terpolation with a certain number of interpolation points ac-
cording to the current frame length. Depending on the warp-
ing parameter «, this interpolation would either cover only
a part of the original time frame (« < 1) or stretch across a
span of time that is greater than the original frame (a > 1).
A straight-forward summation of the time signals obtained
through (7), suggested by applying the DFT linearity rule
to (4), would lead to time signals with unreasonable prop-
erties as signal jumps. Therefore, we propose extending the
scaling to cover the complete original frame, that, conse-
quently, yields scaled frames of different lengths. Finally,
these frames are joined within the TD-PSOLA processing
step, which has to be carried out I + 1 times.

3.3. On the Computational Complexity of TD-VTLN

In Section 1, we have argued, that we want to use TD-VTLN
for accelerating the conversion process. However, through
the usage of the convolution operation which has a com-
plexity order of O(72), we will not essentially reduce the
computing time?. Only the special case I = 0, i.e. the linear

1The computational complexity order of the DFT algorithm is O(72)
as well.

FD-VTLN | TD-VTLN
DFT 4T? — 2T -
spline interpolation 40T 40T
IDFT 4T% — 2T -
PSOLA 4T 4T

| total | 872 + 40T | 44T |

Table 2. FDvs. TD-VTLN: breakdown of operations (I =0)

warping function with exactly one segment can essentially
speed up the computation: In (4), the summation is omitted
and we have 8 = 0. Furthermore, R(aw) becomes 1.0 for
the complete considered spectrum, thus, the convolution (7)
need not be performed and we obtain the warped time frame

Z(t) = u(t) = ax(at) .

Table 2 shows a comparison between FD and TD-VTLN
with respect to the required operations. When we take the
average frame lengths from the experimental corpus de-
scribed in Section 4.1, Ty = 101 and T},, = 140 for the
female and the male speaker, respectively, we obtain an ac-
celeration by a factor of about 19 for the female and about
26 for the male speaker replacing FD-VTLN by TD-VTLN.

4. EXPERIMENTS

In the last section, we have shown that for the special case
1 = 0 the computing time can be essentially reduced. How-
ever, we have to control, if this simplification affects the
conversion quality compared to the standard case I = 1,
cf. [3] and [5]. This section addresses the subjective evalu-
ation of the presented TD-VTLN technique.

4.1. The Corpus

The corpus utilized in this work contains several hundred
Spanish sentences uttered by a female and a male speaker.
The speech signals were recorded in an acoustically isolated
environment and sampled at a sample frequency of 16 kHz.

4.2. Defining the Warping Parameters

As mentioned in Section 1, in speech synthesis, VTLN is
used to create new voices that are sufficiently distinguish-
able from the original. To investigate this effect, we esti-
mate the warping parameters in the way that the converted
spectra that stem from speech of a source speaker maxi-
mally approach the corresponding spectra of a target speak-
er’s speech. To obtain these corresponding spectra, we ap-
ply dynamic time warping to the speech signals based on
equivalent utterances of both speakers (text-dependent ap-
proach). The cost function, which is to be minimized, is
derived from the objective error criterion described in [15]
and leads to the following equation:

N
a = argmi/nzwnd(j(n(a/)ayn)
* n=1
N ~
an arg min d(X, (o), Yn)

n=1

%



FD-VTLN | TD-VTLN || total

source speaker 20% 16% 18%
target speaker 29% 36% 32%
neither 50% 48% 49%

Table 3. Results of the extended ABX test

FD-VTLN | TD-VTLN || total
female-male 3.3 3.4 3.3
male-female 2.6 2.6 2.6

[ tom | 30 | 30 [ |

Table 4. Results of the MOS test

with w,, =

X vy
VEX) VE{)

Here, N is the number of training frames and E(X) is the
signal energy of the spectrum X.

and d(X,Y)=FE

4.3. Subjective Evaluation

By means of the method described in the last section, we de-
termined the warping parameter « for the two gender com-
binations utilizing 10 training sentences. Then, we applied
both FD and TD-VTLN and both gender combinations to
8 sentences of the corpus, obtaining a total of 32 converted
sentences. From these, 8 sentences were randomly selected
in the way that each gender-VTLN combination was rep-
resented by exactly two sentences. This randomization was
carried out again for each of the 14 participants, 12 of whom
were specialists in speech processing.

At first, the participants were asked if the converted
voice sounds similar to the source or to the target voice
or to neither of them (extended ABX test). This was to
control the capability of VTLN-based voice conversion to
generate new voices. Furthermore, they were asked to as-
sess the overall sound quality of the converted speech on a
mean opinion score (MOS) scale between 1 (very bad) and
5 (very good). Table 3 reports the results of the extended
ABX test and Table 4 those of the MOS rating depending
on the VTLN technique and the gender combination.

4.4. Interpretation
The outcomes of the subjective tests discussed in the last
section can be interpreted as follows:

e VTLN-based voice conversion features the capability
to manipulate a given voice in such a way that the result
is sufficiently different from the original to be perceived as
another voice: Only 18% of the example sentences were
recognized as spoken by the source speaker, cf. Table 3.

e On the other side, VTLN-based voice conversion is
not appropriate to imitate a certain speaker’s voice: Table 3
reports that only 32% of the examples were perceived to be
uttered by the target speaker whose voice characteristics led
to the warping parameter «, cf. Section 4.2,

o As Table 4 shows, the overall sound quality of the two
compared techniques FD and TD-VTLN is equivalent, al-
though the former is based on the conventional piece-wise
linear warping function with two segments [13] (I=1),
whereas the latter uses the special case introduced in Sec-
tion 3.3 (1=0). The average MOS corresponds to that re-
ported in the literature dealing with VTLN-based voice con-
version, cf. [5].

e At least for the corpus our tests were based on, the
conversion from a male to a female voice resulted in an es-
sentially worse MOS than the other direction, cf. Table 4.
This result confirms the objective error measures reported

in [3].
in [3] 5. CONCLUSION

This paper addresses the transformation of the spectral warp-
ing as a part of FD-VTLN to the time domain. We refer to
this technique as time domain vocal tract length normaliza-
tion (TD-VTLN). When we apply TD-VTLN to voice con-
version, the computational costs can be reduced by a factor
of about 20 while keeping the sound quality and the ability
of voice identity conversion.
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