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ABSTRACT

Residual prediction is a technique that aims at recovering
the spectral details of speech that was encoded using param-
eterizations as linear predictive coefficients. Example ap-
plications of residual prediction are hidden Markov model-
based speech synthesis or voice conversion. Our voice con-
version experiments showed that only one of the seven com-
pared techniques was capable of successfully converting the
voice while achieving a fair speech quality (i.e. mean opin-
ion score = 3).

1. INTRODUCTION

Several tasks of speech generation and manipulation as
voice conversion [1] or hidden Markov model-based speech
synthesis [2] are capable of dealing fairly well with speech
that is encoded using parameter representations as mel fre-
quency cepstral coefficients, linear predictive coefficients,
or line spectral frequencies. These parameters aim at repre-
senting the vocal tract while the excitation is represented by
the residual signal. Often, when generating (speech synthe-
sis) or transforming (voice conversion) speech using one of
the above parameterizations, the excitation is modeled very
roughly using a single pulse in voiced regions and white
noise with random phases in unvoiced regions. However,
as this simple model may result in a synthetic sound of
the voice and, furthermore, the residual seems to contain
speaker-dependent information [3], it is reasonable to model
the residual more carefully.

After dealing with the properties of our baseline voice
conversion system in Section 2, we briefly describe seven
residual prediction approaches in Section 3. Then, in Sec-
tion 4, we examine these approaches using a Spanish cross-
gender corpus by means of listening tests. The results of this
evaluation are discussed in Section 5. It turns out that the
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technique based on unit selection outperforms the others in
terms of voice conversion performance and sound quality.

2. THE BASELINE VOICE CONVERSION SYSTEM

2.1. Training Phase

A state-of-the-art technique based on linear transformation
serves as our baseline system [4]. It requires parallel ut-
terances of source and target speaker for training [5]. The
speech data is split into pitch-synchronous frames using the
pitch marking algorithm proposed in [6]. For extracting
frames in unvoiced regions, this algorithm applies a linear
interpolation between neighbored voiced regions. To im-
prove the speech quality of the overlap and add technique
used for the synthesis in Section 2.2, we always regard two
successive pitch periods as being one frame as suggested
in [3].

Now, the frame sequences of parallel source and target
speaker utterances are aligned by means of dynamic time
warping. Each frame is parameterized using linear predic-
tive coefficients that are converted to line spectral frequen-
cies that feature better interpolation properties.

Let xM1 and yM1 be parallel sequences of feature vectors
of the source and target speech, respectively. Then, we use
the combination of these sequences

zM1 =

(

x1

y1

)

, . . . ,

(

xM
yM

)

to estimate the parameters of a Gaussian mixture model
(αi, µi,Σi) with I components for the joint density p(x, y).

A list of the system parameters can be found in Table 1.

2.2. Conversion Phase

Here, we are given a source speaker’s utterance that is pro-
cessed as described in Section 2.1 yielding a sequence of
feature vectors. Each source feature vector x is converted



parameter description value
fs sampling rate 16 kHz
f0n norm fundamental frequency 100 Hz
q quantization 16 bit
F order of the line spectral frequencies 16
I number of Gaussian mixtures for the 4

linear transformation

Table 1. System parameters.

to a target vector y by the conversion function which mini-
mizes the mean squared error between the converted source
and the target vectors observed in training:
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The target line spectral frequency vectors are transformed to
linear predictive coefficients that are used in the framework
of linear prediction pitch-synchronous overlap and add [7]
to generate the converted speech signal. Here, for each time
frame, the respective underlying residual is required. In the
following section, we want to deal with techniques that al-
low for predicting these residuals.

3. SEVEN TIMES RESIDUAL PREDICTION

3.1. The Trivial Solution: Copying Source Residuals

Let us suppose that the vocal tract characteristics of a speak-
er’s speech are represented by line spectral frequencies, and
the residuals correspond to the excitation signal that hardly
contains speaker-dependent information. Then, the simplest
idea for the residual prediction is to take the residuals of the
source speech and filter them by means of the converted fea-
tures. This technique was used by A. Kain and M. W. Ma-
con, but they stated that “merely changing the spectrum is
not sufficient for changing the speaker identity” [4]. Most
of the listeners “had the impression that a ‘third’ speaker
was created”.

3.2. The Cheat: Copying Reference Residuals

Hence, it seems that the residuals contain a lot of speaker-
dependent information so that the contribution of the spec-
tral transformation to the properties of the converted signal

can hardly be distinguished from that of the residual pre-
diction. To separate both contributions, Duxans et al. [8]
extracted the residuals from the reference (target) speech
that was aligned to the source speech and restricted their
investigations to the spectral conversion. Utilizing the ref-
erence residuals as excitation signal should result in the best
voice conversion performance in terms of sound quality and
the ability for identity conversion compared to an arbitrary
residual prediction technique. Therefore, in this paper, we
want to use this method as a standard of comparison.

3.3. Residual Codebook Method

In addition to the observation that the residual signal also
contains speaker-dependent information, it has to be men-
tioned that the line spectral frequencies which describe the
vocal tract characteristics and the corresponding residuals
are even correlated. This insight led to the idea that the
residuals of the converted speech could be predicted based
on the converted feature vectors and resulted in the follow-
ing residual prediction technique [9].

In training phase, for each pitch-synchronous frame, we
compute the linear predictive coefficients and convert them
to a cepstral representation. Then, the probability distribu-
tion of the set of all linear predictive cepstral vectors seen in
training is modeled by means of a Gaussian mixture model
with Irc mixture components. Now, we determine the typ-
ical residual magnitude spectra m̂i for each mixture com-
ponent i by computing a weighted average of all residual
magnitude spectra mn seen in training where the weights
are the posterior probabilities p(i|vn) that a given cepstral
vector vn belongs to the mixture component i:

m̂i =

N
∑

n=1

mnp(i|vn)

N
∑

ν=1

p(i|vν)

.

During the conversion phase, for each frame, we obtain a
converted cepstral vector ṽ that serves as basis for the pre-
diction of the residual magnitude spectrum m̃ by calculating
a weighted sum over all mixture components:

m̃ =

Irc
∑

i=1

m̂ip(i|ṽ) .

3.4. Spectral Refinement

When applying the spectral refinement technique [10], at
first, we train a Gaussian mixture model with Isr mixture
components on the line spectral frequency representation of
all target speaker spectra seen in the training corpus. Now,
we introduce the vector P (v) = [p(1|v), . . . , p(Isr|v)]

′

which consist of the posterior probabilities that vector v



belongs to the components 1, . . . , Isr, and a matrix M =
[M1, . . . ,MIsr ] which consists of Isr prototypes of logarith-
mic residual representations. In order to determine M , we
minimize the following square error:

ε =

N
∑

n=1

S(log(mn)−MP (vn)) ,

where S(x) is the sum over the squared elements of a vector
x, mn is the residual magnitude spectrum of the nth speech
frame seen in training.

During the conversion phase, for each frame, we are
given a transformed feature vector ṽ and predict the cor-
responding residual magnitude spectrum as

m̃ = exp(MP (ṽ)) .

3.5. Residual Selection

The residual codebook method and the spectral refinement
described in the previous sections try to represent an arbi-
trary residual by a linear combination of a limited number
of prototype residuals. Since both methods only deal with
the residual magnitude spectrum, in addition, they have to
apply a phase prediction; for details, please refer to the re-
spective publications [9, 10].

To better model the manifold characteristics of the resid-
uals and predict both magnitude as well as phase spectra
at the same time, the residual selection technique stores all
residuals rn seen in training into a table together with the
corresponding feature vectors vn that this time are com-
posed of the line spectral frequencies and their deltas [11].

In the conversion phase, we have the current feature vec-
tor ṽ of the above described structure and choose one resid-
ual from the table by minimizing the square error between
ṽ and all feature vectors seen in training

r̃ = rñ with ñ = arg min
n = 1,...,N

S(ṽ − vn) . (1)

3.6. Residual Smoothing

When listening to converted speech generated using the re-
sidual selection technique, in particular in voiced regions,
we note a lot of artifacts and, sometimes, obviously im-
proper residuals that occur due to the insufficient correla-
tion between feature vectors and residuals. In voiced re-
gions, the signal should be almost periodic; we do not ex-
pect the residuals to change abruptly. In unvoiced regions,
as mentioned in Section 1, the residuals should feature a
random phase spectrum that essentially changes from frame
to frame. These considerations led to the idea of a voicing-
dependent residual smoothing as proposed in [12].

We are given the sequence r̃K1 of predicted residual tar-
get vectors derived from Eq. 1, a sequence of scalars σK1

with 0 < σk ≤ 1 that are the voicing degrees of the frames
to be converted, determined according to [13], and the voic-
ing gain α. At last, we obtain the final residuals by applying
a normal distribution function to compute a weighted aver-
age over all residual vectors r̃K1 , the standard deviation is
defined by the product of gain and voicing degree:

r∗k =

K
∑

κ=1

N(κ|k, ασk) · r̃κ

K
∑

κ=1

N(κ|k, ασk)

. (2)

This equation can be interpreted as follows: In case of
voiced frames (σ ≈ 1), we obtain a wide bell curve that
averages over several neighbored residuals, whereas for un-
voiced frames (σ → 0), the curve approaches a Dirac func-
tion, i.e., there is no local smoothing, the residuals and the
corresponding phase spectra change chaotically over the
time as expected in unvoiced regions.

In order to be able to execute the summation, the vectors
r̃K1 must have the same lengths. This is achieved by utiliz-
ing a normalization as suggested in [10], where all residuals
are normalized to the norm fundamental frequency f0n, cf.
Table 1.

3.7. Unit Selection

Although the residual smoothing approach essentially im-
proves the speech quality (from a mean opinion score of
2.0 to 2.6, cf. Table 4) it is still insufficient for applica-
tions where the quality is of importance as for server-based
speech synthesis with fs ≥ 16 kHz. Mainly, this is due
to an oversmoothing caused when the voicing gain α is too
large. This results in a deterioration of the articulation and
increases the voicing of unvoiced sounds. However, when
α is too small, the artifacts are not sufficiently suppressed,
hence, the choice of α is based on a compromise.

Recently, we presented the unit selection approach [14],
a technique that is well-known from concatenative speech
synthesis [15]. Unit selection-based residual prediction is
able to more reliably select residuals from the training data-
base. Consequently, the selected residual sequence r̃K1 al-
ready contains less artifacts, thus, we can use smaller val-
ues for α and, hence, improve the quality of the converted
speech.

Generally, in the unit selection framework, two cost func-
tions are defined. In this case, the target cost Ct(rk, ṽk) is
an estimate of the difference between the database residual
rk and that selected by means of feature vector ṽk. The con-
catenation cost Cc(rk−1, rk) is an estimate of the quality of
a join between the consecutive residuals rk−1 and rk.

The searched residual sequence r̃K1 is determined by
minimizing the sum of the target and concatenation costs
applied to an arbitrarily selected sequence of K elements



training test
M time K time

female 51,365 341.1 s 1,901 14.0 s
male 44,772 377.2 s 1,703 13.4 s

Table 2. Corpus statistics; M and K are the numbers of
frames in the training and test data, respectively.

from the set of residuals seen in training, rM1 , given the tar-
get feature sequence ṽK1 :

r̃K1 = argmin
rK

1

K
∑

k=1

Ct(rk, ṽk) + Cc(rk−1, rk)

4. EVALUATION

4.1. Experimental Corpus

The corpus utilized in this work contains 100 Spanish sen-
tences uttered by a female and a male speaker, cf. [16]. It
was designed to provide baseline voices for Spanish speech
synthesis, e.g. in the UPC text-to-speech system [17]. For
the corpus statistics, cf. Table 2.

4.2. Subjective Evaluation

The goal of the subjective evaluation of the described resid-
ual prediction techniques is to answer two questions:

• Does the technique change the speaker identity in the
intended way?

• How does a listener assess the overall sound quality
of the converted speech?

We want to find the answers by means of the extended ABX
test and the mean opinion score (MOS) evaluation described
in [18].

We performed both, female-to-male (f2m) and male-to-
female (m2f) voice conversion using the corpus described in
Section 4.1. Now, 27 evaluation participants, 25 of whom
specialists in speech processing, were asked if the converted
voice sounds similar to the source or to the target voice or
to neither of them (extended ABX test). In doing so, they
were asked to ignore the recording conditions, the sound or
synthesis quality of the samples, the speaking style, and the
prosody. Furthermore, they assessed the overall quality of
the converted speech on an MOS scale between 1 (bad) and
5 (excellent).1

Table 3 reports the results of the extended ABX test and
Table 4 those of the MOS rating depending on the residual
prediction technique and the gender combination.

1The subjective evaluation was carried out using the web interface
http://suendermann.com/unit.

[%] source target neither
source residuals 20 10 70
reference residuals 0 79 21
residual codebook 0 70 30
spectral refinement 0 83 17
residual selection 0 70 30
residual smoothing 0 85 15
unit selection 2 83 15

Table 3. Results of the extended ABX test

m2f f2m total
source residuals 3.2 3.7 3.5
reference residuals 3.0 3.0 3.0
residual codebook 1.6 1.9 1.8
spectral refinement 2.0 2.0 2.0
residual selection 1.7 2.3 2.0
residual smoothing 2.2 2.9 2.6
unit selection 2.8 3.2 3.0

Table 4. Results of the MOS test

5. INTERPRETATION

Addressing the first question that we asked in Section 4.2,
we find that all assessed techniques succeed in converting
the source voice to the target voice in more than 70% of
the cases, cf. Table 3. The only exception is the use of the
source residuals where the majority of the listeners had the
impression of hearing a third speaker as we have already ex-
pected in Section 3.1. Spectral refinement, residual smooth-
ing, and unit selection showed almost the same conversion
performance: In about 85% of the cases, the target voice
was recognized which is even higher than using the time-
aligned reference residuals.

When we have a look at Table 4, we note that using
unprocessed residuals produces the highest speech quality.
Applying the reference residuals works worse as the time-
alignment based on dynamic time warping sometimes re-
sults in prosodic artifacts. However, we have to empha-
size again that the reference speech is not given in a real
world situation; we only considered this procedure to ob-
tain a standard of comparison.

Having a look at the remaining techniques that succeed-
ed in converting the source to the target voice, we see that
the unit selection technique outperforms the others in terms
of speech quality and achieves a quality similar to that of us-
ing the reference residuals (MOS = 3.0). Past experiments
on voice conversion techniques that explicitly are to ”intro-
duce as few distortions as possible” [19] while ignoring the
success of the speaker identity conversion resulted in MOS



scores about 3.0 [19], also on the same corpus [18]. Conse-
quently, the achieved speech quality is state-of-the-art.

6. CONCLUSION

In this paper, we compared seven residual prediction tech-
niques and applied them to voice conversion. We found that
the unit selection-based approach outperforms the others in
terms of speech quality. Furthermore, this technique re-
sulted in a voice conversion performance that was one of
the best achieved in the evaluation.
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