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ABSTRACT

In this paper, the Part-Of-Speech (POS) taggersynther
based on m-gram statistics is described. After explain-
ing its basic architecture, three smoothing approaches
and the strategy for handling unknown words is
exposed. Subsequently,synther’s performance is
evaluated in comparison with four state-of-the-art
POS taggers. All of them are trained and tested on
three corpora of different languages and domains.
In the course of this evaluation,syntherresulted in
the lowest error rates or at least below average error
rates. Finally, it is shown that the linear interpo-
lation smoothing strategy with coverage-dependent
weights features better properties than the two other
approaches.

Keywords: synther, (m-gram) POS tagger, linear
interpolation smoothing with coverage-dependent
weights, POS tagger evaluation

1. INTRODUCTION

POS taggers are used in many natural language pro-
cessing tasks, e.g. in speech recognition, speech syn-
thesis, or statistical machine translation. Their most
common aim is to assign a unique POS tag to each
token of the input text string.

To the best of our knowledge, statistical ap-
proaches [1], [3], [8] in most cases yield better out-
comes to POS tagging than finite-state, rule-based,
or memory-based approaches [2], [4]. Although the
maximum entropy framework [8] seem to be the
most acknowledged statistical tagging technique, it
has been shown that a simple trigram approach often

results in better performance [1]. As taking more con-
text into account should improve tagging results, the
usage of higher m-gram orders in conjunction with an
effective smoothing method is desirable. Thus, in this
paper a new approach for defining the weights of the
linear interpolation smoothing technique is presented
and compared with two conventional smoothing meth-
ods.

In POS tagging applications, one further viewpoint
is especially considered: the handling of words which
have not been seen during the training, so called out-
of-vocabulary (OOV) words. In Section 4, the ap-
proach utilized withinsyntheris described.

Finally, synther’s performance is evaluated in
comparison to four state-of-the-art taggers on three
corpora of different languages and domains.

2. BASIC ARCHITECTURE OF A POS
TAGGER

The aim of the POS taggers (v. the schematic diagram
in Figure 1) discussed in this paper is the assignment
of unambiguous POS tags to the words of an input
text.

Given the word (or more general token) sequence
wN

1 := w1 · · ·wn · · ·wN on the positionsn = 1, . . . ,N,
we search for the most likely tag sequence

ĝN
1 := arg max

gN
1

Pr(gN
1 |wN

1 ).

Rewriting this formula by means ofB’ law yields

ĝN
1 = arg max

gN
1

Pr(gN
1 ) · Pr(wN

1 |gN
1 ).
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Figure 1:Schematic Diagram of a POS Tagger

Pr(wN
1 |gN

1 ) is the word-tag model andPr(gN
1 ) the tag

sequence model.

After factorizing the given joint probabilities into
products of conditional probabilities and limiting the
history which is taken into consideration, we get

Pr(gN
1 ) =

N∏

n=1

p(gn|gn−1
n−m+1) and (1)

Pr(wN
1 |gN

1 ) =

N∏

n=1

p(wn|gn). (2)

3. SMOOTHING

Due to training data sparseness, the probabilities of
the tag sequence model should be smoothed. Conse-
quently, three different smoothing strategies have been
tested (cf. Section 6.2). All of them use the explicit
discounting approach proposed by [6] where non-zero
probabilities are assigned to unseen tag sequences
by discounting each frequencyN(gn

n−µ+1) > 0 for
µ = 2, . . . ,m and redistributing the probability mass.
These frequencies are estimated on the basis of the
tag sequence in traininggtr

L
1.

3.1 Absolute Discounting

In this model, the frequencies greater than zero are dis-
counted by a constant valuebµ which is determined
with the help of so-called count-countsnµ,r which are
the numbers of tags observed exactlyr times in the
training data (δ denotes the Kronecker Delta). The
tag-sequence probabilities for unseen events are as-
signed the constantbµ weighted by a normalization
factor and the tag-sequence probability of a shortened
history. Here,Nh(gn−1

n−µ+1) denotes the number ofµ-

grams with historygn−1
n−µ+1.

p(gn|gn−1
n−µ+1) =



N(gn
n−µ+1)−bµ

N(gn−1
n−µ+1)

if N(gn
n−µ+1) > 0

bµ ·
Nh(gn−1

n−µ+1)

N(gn−1
n−µ+1)

· p(gn|gn−1
n−µ+2)

∑
g′

p(g′ |gn−1
n−µ+2)

otherw.

bµ :=
nµ,1

nµ,1 + 2nµ,2
;

nµ,r :=
L−µ+1∑

l=1

δ(N(gtr
l+µ−1
l ), r) (3)

3.2 Linear Interpolation with Weights
Calculated by Means of the
Leaving-One-Out Principle

This smoothing technique also uses the relative fre-
quencies of smaller contexts down to the unigram
and rates them by means of the weightsλµ whose
sum must be one. The Leaving-One-Out method dis-
counts the non-zero frequencies of each m-gram by
one, searches for the context length which results in
the maximum relative frequency, and increments the
according weight [1].

p(gn|gn−1
n−m+1) =

m∑

µ=1

λµ
N(gn

n−µ+1)

N(gn−1
n−µ+1)

; (4)

λµ =

∑
gm

1 ∈Gµ

N(gm
1 )

L −m+ 1
with

Gµ =

{
gm

1 ∈
{
gtr

m
1 ,gtr

m+1
2 , . . . ,gtr

L
L−m+1

}
:

µ = arg max
ν=1,...,m

N(gm
m−ν+1) − 1

N(gm−1
m−ν+1) − 1

}



3.3 Linear Interpolation with Weights
Depending on Training Data Coverage

This technique understands that a high training data
coverage for the orderµ signifies that we are allowed
to take more context into account and to rate that con-
text higher. The training data coveragecµ is the ra-
tio between the number of differentµ-grams occurred
while training and that of all possibleµ-grams. Hence,
we have 0≤ cµ ≤ 1. On the other hand, a low coverage
(high sparseness) is indicator that theµ-gram weight
should be curtailed.

According to the above considerations we want the
interpolation weights to be positioned on a continuous
function λµ(cµ) fulfilling the following conditions (ĉ
denotes theoptimal coverage):

• λµ(0) = 0,

• λµ(ĉ) = max
cµ

λµ(cµ),

• 0 < λµ(cµ) < λµ(ĉ) for cµ , 0∧ cµ , ĉ.

One simple realization of these constraints is a set of
λµ which is computed by normalizing the valuesλ′µ
defined as follows. The normalization has to be ex-
ecuted because the sum of the interpolation weights
must be unity.

λ′µ =



ĉ
cµ

for cµ ≥ ĉ

cµ
ĉ

otherwise

ĉ should be estimated with the help of a development
corpus and can be expected in the neighborhood of one
percent.

4. OOV HANDLING

In Eq. (2), the word-tag probability is defined as a
product of conditional probabilitiesp(w|g) which can
be derived fromp(g|w) by means ofB’ law:

p(w|g) =
p(w) · p(g|w)

p(g)
.

Furthermore, we understand thatp(g) is known and
p(w) constitute a factor which is equal for each possi-
ble tag sequencegn

1 and can be ignored searching for

the most probable sequence. Therefore, in the follow-
ing, we only discuss the estimation of the conditional
probability p(g|w).

In case of a word seen in training, we estimate
p(g|w) using relative frequencies, otherwise, we have
a more detailed look at the actual word consisting of
the ASCII charactersl1, . . . , l I . Especially the final
characters serve as a good means to estimate word-
tag probabilities of OOVs in Western European lan-
guages.

When we want to take into account relative fre-
quencies of character strings seen in training, we have
to deal with training data sparseness. Again, this
leads us to the usage of smoothing strategies, cf.

Section 3. syntheruses the linear interpolation tech-
nique, v. Eq. (4), wherein the weights are defined as
proposed in [9]. These considerations yield the gen-
eral definition of the searched probabilityp(g|w).

p(g|w) =



N(g,w)
N(w)

for N(w) > 0

I∑

i=1

λi
N(g, l i , . . . , l I )
N(l i , . . . , l I )

otherwise

with λi =
1
σ

(
σ

1 + σ

)i

Here,σ is the standard deviation of the estimated tag
occurrence probabilities.

5. CORPORA

In the following, the corpora used for evaluation of
syntherare compendiously presented.

Punctuation Marks (PMs) are all tokens which do
not contain letters or digits. Singletons are all tokens
respectively POS tags which occur only once in the
training data. The m-gram perplexity is a degree of
the diversity of tokens expected at each position:

PPm =


N∏

n=m

p(gn|gn−1
n−m+1)



−1
N−m+1

.

The trigram perplexityPP3 displayed in Table 1 to 3
was computed using the linear interpolation smooth-
ing approach explained in Section 3.3.



When we restrict the search space by exclusively
taking those tags into account which have been ob-
served in connection with the particular token, the tag-
ging procedure can only make errors in case of either
ambiguities (also OOVs) or if a token has only been
seen with tags differing from that of the reference se-
quence. The maximum error rateERmax is that error
rate which we get if we always choose a wrong tag
in ambiguous cases. When we randomly determine
the tags according to a uniform distribution over all
tags observed together with a particular word, we ex-
pect the random error rateERrand. These two error
rates serve as benchmarks to assess the properties of
the corpus. E.g., we note that the error rates of the
POS taggers presented below are about ten percent of
ERrand.

5.1 Penn Treebank: Wall Street Journal
Corpus

This corpus contains about one million English words
of 1989 Wall Street Journal (WSJ) material with
human-annotated POS tags. It was developed at the
University of Pennsylvania [10], v. Table 1.

Table 1:WSJ Corpus Statistics

Text POS

Sentences 43 508
Words+ PMs 1 061 772
Punctuation Marks 138 279 131 075

Train
Vocabulary Words 46 806 45
Vocabulary PMs 25 9
Singletons 21 552 0

Sentences 4 478
Words+ PMs 111 220
OOVs 2 879 0

(2.6%) (0%)
Test Punctuation Marks 14 877 14 115

(13.4%) (12.7%)
PP3 – 8.3
ERmax – 55.7%
ERrand – 36.7%

5.2 Münster Tagging Project Corpus

This German POS tagging corpus was compiled at
the University of M̈unster within the M̈unster Tagging

Project (MTP). It contains articles of the newspapers
Die Zeit and Frankfurter Allgemeine Zeitung[5], v.
Table 2.

Table 2:MTP Corpus Statistics

Text POS

Sentences 19 845
Words+ PMs 349 699
Punctuation Marks 45 927 45 817

Train
Vocabulary Words 51 491 68
Vocabulary PMs 27 5
Singletons 32 678 11

Sentences 2 206
Words+ PMs 39 052
OOVs 3 584 2

(9.2%) (0.0%)
Test Punctuation Marks 5 125 5 113

(13.1%) (13.1%)
PP3 – 7.5
ERmax – 66.7%
ERrand – 49.8%

5.3 GENIA Corpus

The data content of the GENIA corpus is chosen from
the domain of molecular biology. It is edited in Amer-
ican English and has been made available by the Uni-
versity of Tokyo [7], v. Table 3.

6. EXPERIMENTS

6.1 Evaluatingsyntherin Comparison to
Four Other POS Taggers

To perform an evaluation under objective conditions
and to obtain comparable outcomes,syntherhas been
trained and tested together with four freely available
POS taggers:

• B’s tagger based on automatically learned
rules [2]

• R’s maximum entropy tagger [8]

• TnT – a trigram tagger byT B [1]

• TreeTagger– a tagger based on decision trees
provided byH S [11]



Table 3:GENIA Corpus Statistics

Text POS

Sentences 6 191
Words+ PMs 149 788
Punctuation Marks 17 181 16 900

Train
Vocabulary Words 11 557 56
Vocabulary PMs 25 7
Singletons 5 705 9

Sentences 689
Words+ PMs 16 585
OOVs 626 0

(3.8%) (0%)
Test Punctuation Marks 1 865 1 807

(11.2%) (10.9%)
PP3 – 6.1
ERmax – 36.6%
ERrand – 22.2%

Table 4 shows the results of this comparison: the to-
tal error rate, that for the OOVs, and, furthermore, the
outcomes exclusively for known words (OOV). The
latter is to separate the effect of OOV handling from
that of the remaining statistics. All tests presented in
this paper except for those in Section 6.2 were exe-
cuted settingsynther’s m-gram order tom = 5. In
particular, the outcomes of Table 4 show us:

• In several cases, the m-gram statistics used by
syntherresult in the lowest error rates in com-
parison to the other taggers tested in the course
of this evaluation.

• Both B’s and R’s POS tagger
which were developed at the Department of
Computer and Information Science of the Uni-
versity of Pennsylvania produce their best results
on their in-house corpus (WSJ).

• TnT as well assyntheralways produce above-
average outcomes. Except for the OOVs, the lat-
ter’s statistics decreases the error rates by up to 6
percent relative by virtue of higher m-gram order
(m = 5 in lieu of 3).

Table 4:POS Tagger Evaluation: Error Rates

ER[%]
Corpus Tagger

all OOV OOV

B 3.45 17.3 3.09
R 3.11 14.6 2.81

WSJ synther 3.39 16.1 3.06
TnT 3.43 14.9 3.13
TreeTagger 3.82 30.7 3.11

B 5.80 17.2 4.65
R 5.51 12.5 4.80

MTP synther 5.24 13.4 4.42
TnT 5.42 14.3 4.52
TreeTagger 5.68 16.6 4.58

B 2.61 17.4 2.05
R 2.03 11.5 1.66

GENIA synther 1.94 13.2 1.50
TnT 2.01 12.6 1.59
TreeTagger 2.59 27.6 1.61

6.2 Comparison of Smoothing Techniques

In the introduction of this paper, we have conjectured
that increasing the order of m-gram statistics should
improve the tagging performance. The following test
will show that this assumption is only correct if it is
supported by the smoothing strategy. In Figure 2, the
performance of the three smoothing approaches pre-
sented in Section 3 is displayed versus the maximum
m-gram orderm. These experiments are based on the
WSJ corpus described in Table 1.

We note that the coverage dependent smoothing ap-
proach is the best out of these three strategies, at least
for ordersm > 2 and for the WSJ corpus. As well,
this statement was confirmed on the MTP and GENIA
corpus.

6.3 Influence of the Optimal Coverage
Parameter ĉ on the Smoothing Accuracy

Finally, we want to demonstrate how the accuracy of
the coverage-dependent smoothing approach (cf. Sec-
tion 3.3) is influenced by the optimal coverage param-
eter ĉ. By means of the WSJ corpus in Figure 3, we
demonstrate that there is a local and also absolute min-
imum of the error rate curve. This minimum is located
in a broad area of low gradients (ˆc = 0.01. . .0.1) thus



Figure 2:Comparison of Smoothing Strategies

determining any value within this area suffice to obtain
error rates around 3.4%.

Figure 3:Dependence of the Tagging Performance on
the Optimal Coveragêc

7. CONCLUSION

In this paper, we have presented the m-gram POS
tagger synther explaining in detail its smoothing
approaches and the strategy for handling unknown
words. Subsequently, the new POS tagger has been
evaluated on three corpora of different languages and
domains and compared with four state-of-the-art tag-
gers. We have shown thatsyntherresults in below-

average or even the lowest error rates using a new lin-
ear interpolation smoothing technique with coverage-
dependent weights.
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