
Comparing Open-Source Speech Recognition

Toolkits ⋆

Christian Gaida1, Patrick Lange1,2,3, Rico Petrick2, Patrick Proba4, Ahmed
Malatawy1,5, and David Suendermann-Oeft1

1 DHBW, Stuttgart, Germany
2 Linguwerk, Dresden, Germany

3 Staffordshire University, Stafford, UK
4 Advantest, Boeblingen, Germany

5 German University in Cairo, Cairo, Egypt

Abstract. In this paper, a large-scale evaluation of open-source speech
recognition toolkits is described. Specifically, HTK in association with
the decoders HDecode and Julius, CMU Sphinx with the decoders pock-
etsphinx and Sphinx-4, and the Kaldi toolkit are compared in terms of
usability and expense of recognition accuracy. The evaluation presented
in this paper was done on German and English language using respective
the Verbmobil 1 and the Wall Street Journal 1 corpus.
We found that, Kaldi providing the most advanced training recipes gives
outstanding results out of the box, the Sphinx toolkit also containing
recipes enables good results in short time. HTK provides the least sup-
port and requires much more time, knowledge and effort to obtain results
of the order of the other toolkits.

1 Introduction

Over the last decades, a good number of continuous speech recognition systems
have seen the light of day. On the one hand, there are commercial systems
such as AT&T Watson [1], Microsoft Speech Server [2], Google Speech API [3]
and Nuance Recognizer [4]. On the other hand, proprietary systems offer little
control over the recognizer’s features, and limited native integrability into other
software, leading to a releasing of a great number of open-source automatic
speech recognition (ASR) systems.

Due to the growing number of open-source ASR systems, it becomes increas-
ingly more difficult to understand which of them suits the needs of a given target
application best. This paper is to report about the results of a study to compare
popular open-source large vocabulary ASR toolkits with support by a community
and easy access. We evaluate the effort-performance ratio of the selected ASR

⋆ This work was supported by a grant from the Baden-Wuerttemberg Ministry of Sci-
ence and Arts as part of the research project OASIS. Furthermore, we wholeheartedly
appreciate the substantial advice we received by Nick Shmyrev, a principal contrib-
utor to the Sphinx project.



toolkits because a perfectly fair comparision on performance only should result
in similar error rates differing only due to different decoder implementations.

We selected the following ASR systems for our evaluation:

– Hidden Markov Model Toolkit (HTK6) [5] (v3.4.1) associated with large
vocabulary decoders HDecode (v3.4.1) and Julius7 [6] (v4.3),

– pocketSphinx [7] (v0.8) and Sphinx-4 [8] of the Carnegie Mellon University
(CMU) Sphinx family8 [9], and

– Kaldi9 [10].

We identified further open-source systems and kits:

– RWTH Aachen Automatic Speech Recognition System (RASR) [11],
– Segmental Conditional Random Field Toolkit for Speech Recognition (SCARF) [12],
– Improved ATROS (iATROS) [13],
– SRI International’s Decipher [14],
– idiap’s Juicer [15] and
– SHoUT speech recognition toolkit10,

which we did not select for our evaluation, cause they are not as wide spread in
the community or as easy available like the chosen ones and therefore restrict
the accessibility.

The present research was carried out in the scope of the project OASIS
(Open-source Automatic Speech recognition In Smart devices) [16], sponsored
by the Baden-Wuerttemberg Ministry of Science and Art, suggesting one of
the evaluation’s language to be German. We are also applied the Wall Street
Journal 1 (WSJ1) corpus to our comparison. This is to test the generalizability
of our conclusions for the English language and read rather than conversational
speech. Ultimate goal of the project is to increase spoken language understanding
performance in spoken dialog systems [17].

Related to the present work, there is a comparison [18] evaluating state-of-
the-art open-source speech recognition systems on standard corpora, but not
including Kaldi, which was developed after this work. Another study [19] was
done on free speech recognizers, but is, however, limited to corpora of the domain
of virtual human dialog.

The present work features three main contributions:

(i) In extension to [18] we were the first to include Kaldi in a comprehensive
comparison of open-source speech recognition toolkits.

(ii) Unlike [19], we are using standard corpora which allows for comparing the
achieved performance to other systems and techniques published by the com-
munity.

6 Available from http://htk.eng.cam.ac.uk/
7 Available from http://julius.sourceforge.jp/
8 Available from http://cmusphinx.sourceforge.net/
9 Available from svn://svn.code.sf.net/p/kaldi/code/

10 Available from http://shout-toolkit.sourceforge.net/



(iii) As opposed to the corpora used in [19] which are rather small in size (the
largest corpus, Blackwell, comprises a training data set of about 81k tokens),
our study is based on significantly larger corpora with 285k training tokens
for Verbmobil 1 (VM1) [20] and approx 1.3M tokens for Wall Street Jour-
nal 1 (WSJ1) [21].

This paper is organized as follows: Section 2 gives an overview of the used
corpora. Details on how we trained acoustic models are given in Section 3 and
on language models in Section 4. In Section 5, our tuning experiments on the
development set and the derived setups of the evaluation are described. Section 6
presents and discusses the results of the test run on the test set. In Section 7,
we draw conclusions.

2 Data

2.1 Verbmobil 1 corpus

The German Verbmobil project was funded by the German Ministry of Sci-
ence and Technology (BMBF) and was carried out in the years 1993 through
2000 [22]. The VM database includes dialogic speech in three languages (En-
glish, Japanese, German) in the appointment scheduling task. Statistics of the
training, development, and test portions of the Verbmobil 111 (VM1) corpus are
shown in Table 1.

Table 1. Sets of the Verbmobil 1 corpus.

set utterances tokens types OOV OOV tokens audio
types n % [h]

training 12,590 285,168 6,452 – – – 30.5
development 630 15,084 1,537 235 323 2.1 1.6
test 631 14,615 1,342 173 272 1.9 1.5

2.2 Wall Street Journal 1 corpus

The English Wall Street Journal 112 (WSJ1) corpus was published 1994 [21] and
includes read speech in English of read out loud parts of Wall Street Journal
news. Details of the sets used for training, development and test are shown in
Table 2.

11 Orderable from Bavarian Archive for Speech Signals (BAS),
http://www.phonetik.uni-muenchen.de/Bas/BasVM1eng.html

12 Orderable from Linguistic Data Consortium (LDC),
https://catalog.ldc.upenn.edu/LDC94S13A.



Table 2. Sets of the Wall Street Journal 1 corpus.

set utterances tokens types OOV OOV tokens audio
types n % [h]

training 78,103 1,299,376 18,114 – – – 164.0
development 12,665 221,998 12,601 3,313 5,160 2.3 29.0
test (november ’93) 4,878 80,617 5,128 757 1,179 1.5 9.8

3 Acoustic modeling

3.1 HDecode and Julius

The acoustic models for the decoders HDecode and Julius are trained using
HTK. This toolkit provides a good documentation [5] and examples of a ba-
sic training pipeline, further development of advanced techniques is possible,
but requires extensive knowledge and very much time compared to the other
toolkits. In most cases the development of an own customized toolchain from
scratch is needed, which makes the training a difficult and error-prone task for
inexperienced people.

Our training methodology follows the descriptions in the HTK Book [5] and
[18]. The HTK tool HCopy and speech file manipulation software13 for sphere
files is used to convert the audio data from the National Institute of Standards
and Technology (NIST) speech files to feature files with Mel Frequency Cepstrum
Coefficients with 0th coefficient, delta and acceleration components and cepstral
mean normalization (MFCC 0 D A Z). The main coding parameters are shown
in Table 3.

Table 3. HCopy audio coding parameters.

parameter value

TARGETKIND MFCC 0 D A Z
USEHAMMING T
PREEMCOEF 0.97
NUMCHANS 26
CEPLIFTER 22
NUMCEPS 12

Training of the monophones includes silence handling and realignment to
enhance the matching between pronunciations and acoustic data. In every step
in training, four iterations of the Baum-Welch reestimation are performed.

After training monophones, several recipies for training word-internal and
crossword triphones are used. While word-internal triphones are the default set-
ting, crossword triphones are required for HDecode and tested as an option for

13 Available from http://www.itl.nist.gov/iad/mig/tools/



Julius. For state tying and synthesizing unseen phones, decision-tree-based clus-
tering is used. The mixture splitting for training of Hidden Markov Models with
gaussian mixtures is done first in steps to the power of two, later in predefined
steps.

The training of crossword triphones, the details of tree-based clustering and
the methodology of training models with gaussian mixtures has to be discovered
and developed by the user. There are more advanced techniques like speaker
adaptation and discriminative training for improving the performance available,
but the expense of development of such a toolchain increases significantly and
the build up is not possible without extensive knowledge, so we did not use these
techniques in our comparison.

3.2 Pocketsphinx and Sphinx-4

The acoustic models of pocketsphinx and Sphinx-4 are trained with the CMU
sphinxtrain (v1.0.8) toolkit, providing all necessary tools to make use of the
above described features. Scripting is not necessary. All parameters can easily
be set in a configuration file but a certain level of expertise in speech recognition
is necessary because the documentation is sufficient but not extensive.

Besides continuous acoustic models, sphinxtrain is able to train tied (semi-
continuous) Gaussian mixture models. The models are trained with Mel Fre-
quency Cepstral vectors. By default setting they are similar to HTK and consist
of 13 cepstral, 13 delta, and 13 acceleration coefficients. Further feature extrac-
tion parameters are shown in Table 4. Furthermore, we used Linear Discriminant
Analysis with Maximum Likelihood Linear Transformation (LDA+MLLT) to re-
duce the number of feature dimensions.

Table 4. Sphinx feature extraction parameters.

parameter value

-feat 1s c d dd
-lifter 22
-transform dct
-lowerf 130
-upperf 6800

In contrast to pocketsphinx, Sphinx-4 is limited to continuous acoustic mod-
els.

3.3 Kaldi

The Kaldi toolkit provides several example pipelines for different corpora like
e. g. WSJ1.

The capabilities of these pipelines include LDA+MLLT, speaker adaptive
training (SAT), maximum likelihood linear regression (MLLR), feature-space



MLLR (fMLLR) and maximum mutual information (MMI, fMMI). Gaussian
Mixture Models (GMM) and Subspace GMM (SGMM) are also supported. Fur-
ther the training of Deep Neural Networks (DNN) on top of GMM models
with layer-wise pre-training based on Restricted Boltzmann Machines, per-frame
cross-entropy training, and sequence-discriminative training, using lattice frame-
work and optimizing the State Minimum Bayes Risk criterion [23].

The training is of high computational expense, implementation and pipelines
are optimized for parallel computing, the training of DNNs supports the usage
of GPUs to significantly speed up the processing.

4 Language modeling

4.1 HDecode and Julius

The language models for HDecode and Julius are ARPA n-gram models. In
a first step they were trained with a toolchain build up with HTK tools, but
the resulting files could not be used for extern decoders. Finally the CMU lan-
guage model toolkit [24] was used for language model training. The toolchain
contains extracting word frequencies and vocabulary from the input text with
text2wfreq and wfreq2vocab followed by generating the ARPA language model
file with text2idngram and idngram2lm. Custom parameters are e. g. the n-gram
order, whether open vocabulary is permitted and the discounting methodology
of handling unseen n-grams.

The ARPA file is directly used with HDecode, for Julius it is converted into
binary format using the tool mkbingram to speed up loading.

4.2 pocketsphinx and Sphinx-4

Sphinx uses the CMU language model toolkit toolchain as described in Sec-
tion 4.1. The ARPA file have been converted into binary format to speed up
decoding.

4.3 Kaldi

Due to the language model’s internal representation as finite state transduc-
ers, Kaldi requires the conversion of ARPA language models as trained by the
aforementioned tools into a decoder-specific binary format. For this purpose, a
number of utilities are used including the tools arpa2fst, fstcompile, and multiple
Perl scripts.

5 Experiments

5.1 HDecode and Julius

Language model. In a first step we increased the n-gram order up to four
finding that three is the optimal choice on both corpora. Observing best results



for an order of three we decided to use these for other decoders. In the test
runs on VM1 and WSJ1 we used a ARPA trigram language model for HDecode
and Julius. In a second step we compared different discounting strategies for
handling unseen n-grams, leading to the result Witten-Bell discounting was the
best choice for HDecode on both corpora and Julius on WSJ1. On VM1 Good-
Touring discounting was chosen for Julius as the best option.

Acoustic model. Due to a significantly larger number of parameters, the focus
of performance tuning is on the acoustic model. The tuning process is a quite
difficult task with many degrees of freedom and covering them all is nearly
impossible. Among others, we investigated

– the influence of using word-internal triphones vs. crossword triphones for
Julius. After running a number of experiments on the development set of
VM1, we found that crossword triphones are the better choice for the used
corpora.

– the configuration of state-based vs. decision-tree-based clustering. In tree-
based state tying, different sets of questions are tested. The main questions
differentiate sound groups (vowel, fricative, affricate, sonorant, nasale, plo-
sive, liquide) and extended questions (front, center, back). There are also
thresholds for outlier removal (RO) and force of tying, the tree branch thresh-
old (TB) available. In the test run, we used models trained with decision-tree-
based clustering. Decoding the VM1 test set the model used with HDecode
had 2300 tied states (RO 100, TB 1250), the model of Julius 2660 tied states
(RO 100, TB 1000). On the WSJ1 corpus the used model for both decoders
had 6571 tied states (RO 100, TB 2500). The choice of these parameters was
based on the best results we produced in a quite large amount of tuning runs
on the development sets building up a set of accuracy values depending on
the parameters.

– the number of mixtures and the splitting strategy. Several development runs
showed the optimal numbers of gaussians were 32 (VM1) and 64 (WSJ1) for
HDecode, respectively 24 and 48 for Julius. In first runs a mixture splitting
to the power of two was used. Using smaller steps increased the performance,
so predefined steps (1-2-4-6-8-12-16-24-32-48-64) for increasing the number
of gaussians were used later.

Decoder. Also the decoders can be operated with a number of different config-
urations. For HDecode, optimal parameters included a word insertion penalty of
0, a language model weigth of 10, and a pruning threshold of 150. The decoding
parameters of the evaluation of Julius are summarized in Table 5. The parame-
ter values are increasing the usage of computational resources, slowing down the
decoding process but raising the recognition accuracy.

5.2 Pocketspinx

Language model. As observed for the HTK related decoders, an arpa trigram
language model worked best on the VM1 and WSJ1 corpus.



Table 5. Julius decoding parameters.

parameter value

beam width (-b) 10000
expanded hypotheses (-m) 10000
candidates (-n) 100
stack size (-s) 20000
force output (-fallback1pass)

Acoustic model. Due to a significantly larger number of parameters, the focus
of performance tuning is on the acoustic model. Among others, we investigated
during experiments on VM1

– the influence of semi-continuous and continuous models. In a first evaluation
cycle using the default parameters for both model types, we found that the
continuous acoustic model outperforms the semi-continuous one by 5.5 %
with a WER of 36.10 % on the development set.

– the number of mixtures and senones and the reduction of the number of
feature vector dimensions by means of LDA+MLLT. Reducing the number
of dimensions from 39 to 32 results in a WER improvement of up to 2 %
WER as shown in Table 6. In the test run on VM1, a model with 64 mixtures
per senone, 1750 senones, and with LDA+MLLT was used.

Table 6. WER of pocketsphinx on the VM1 development set.

GMM per senone senones LDA+MLLT WER

8 200 no 36.1
16 3000 no 25.0
64 1750 no 25.2
64 1750 yes 23.2
64 2000 no 24.9
64 2000 yes 23.7

The parameters for the test run on WSJ1 were derived from [18], a model
with 32 mixtures per senone, 8000 senones, and LDA+MLLT was used.

Decoder. In all experiments, we used the decoder’s default parameters with
the exception of the feature extraction parameters shown in Table 4. Further
details on our pocketsphinx tuning setup can be found in [25].



5.3 Sphinx-4

Language model. For VM1 we used the same ARPA trigram model trained
for pocketsphinx throughout all experiments, for WSJ1 the 20k trigram model14

provided by CMU was used.

Acoustic model. In the test run, a model resulting of the pocketSphinx ex-
periments with 64 mixtures per senone and 2000 senones was used for VM1. For
WSJ1 a model provided with Sphinx-4 was used.

Decoder. In all experiments and the test run, we used the decoder’s default
parameters.

5.4 Kaldi

Language model. In view of VM1 the ARPA trigram model used for pocket-
sphinx and Sphinx-4 was converted to the finite state transducer representation
required by Kaldi, regarding to WSJ1 the predefined training script was used
including the generation of a 4-gram language model.

Acoustic model. In all experiments and the test run, we used the predefined
training scripts for WSJ1, for VM1 these scripts were only adapted in view of
the input data.

In the test run a DNN on top of GMMmodels with LDA+MLLT+SAT+fMLLR
were used for both corpora.

Decoder. In all experiments and the test run, we used the predefined decoding
scripts including fMLLR and fMMI.

6 Results

The results of the test runs on the test sets are shown in Table 7.
The time spend to set up, prepare, run and optimize the toolkits was most

for HTK, less Sphinx and least Kaldi.
Compared to the other recognizers, the outstanding performance of Kaldi can

be seen as a revolution in open-source speech recognition technology. The system
features next to all state-of-the-art techniques discussed in literature including
LDA, MLLT, SAT, fMLLR, fMMI, and DNNs out of the box. Even being no
expert, the provided recipes and scripts enable the usage of all these techniques
to the user in short time.

14 http://sourceforge.net/projects/cmusphinx/files/Acoustic and Language

Models/US English WSJ5K Language Model/WSJ20K trigram lm.zip.



The toolkit of the Sphinx family also come up with a training tool, not
containing all techniques of Kaldi leading to less accuracy, but also enabling
training and doing speech recognition shortly after installing the system.

HTK is the most difficult toolkit. Setting up the system required the de-
velopment of the training pipeline, which was time consuming and error-prone.
The development of techniques especially them beyond the provided tutorials
requires much more knowledge and effort as needed for setting up the other sys-
tems. Training techniques like adaptation and discriminative training are basi-
cally possible, but the development of the toolchain is nearly impossible without
being an expert. The results obtained are similar to Sphinx, but the effort to get
these is quite larger.

Table 7. Word error rates on the VM1 test set and the WSJ1 november ’93 test set.

recognizer VM1 WSJ1

HDecode v3.4.1 22.9 19.8
Julius v4.3 27.2 23.1
pocketsphinx v0.8 23.9 21.4
Sphinx-4 26.9 22.7
Kaldi 12.7 6.5

7 Conclusions

In this paper, we described a large scale evaluation of open-source speech recog-
nition toolkits. The main contributions are the inclusion of Kaldi to a com-
prehensive evaluation of open-source ASR systems and the usage of standard
corpora making our results compareable to other publications in the field.

We trained language and acoustic models for HDecode, Julius, pocketsphinx,
Sphinx-4, and Kaldi. We partially tuned the recognition systems and ran tests
on the German Verbmobil 1 and the English Wall Street Journal 1 corpus.

Our experiments show an order of the evaluated toolkits regarding to the ra-
tio of effort to performance. Kaldi outperforms all the other recognition toolkits,
providing training and decoding pipelines including the most advanced tech-
niques out of the box. This conveniently enables the best results in short time
but has the highest computational cost. The Sphinx toolkit also provides a train-
ing pipeline, not as advanced as the Kaldi pipeline, but with the possibility to
generate good results shortly. HTK comes with the simplest start-up kit, the
buildup of a self-trained recognition system to reach the performance of e. g.
Sphinx requires the development of advanced parts by the user and extensive
tuning.

So after installing and compiling the toolkits when the users of Kaldi and
Sphinx obtain there first results the HTK users are still scripting their training
pipelines.



References

1. Goffin, V., Allauzen, C., Bocchieri, E., Hakkani-Tür, D., Ljolje, A., Parthasarathy,
S., Rahim, M., Riccardi, G., Saraclar, M.: The AT&T WATSON speech recognizer.
In: Proc. of the ICASSP, Philadelphia, USA (2005)

2. Dunn, M.: Pro Microsoft Speech Server 2007: Developing Speech Enabled Appli-
cations with .NET (Pro). Apress, Berkeley, USA (2007)

3. Adorf, J.: Web Speech API. Technical report, KTH Royal Institute of Technology,
Stockholm, Sweden (2013)

4. Nuance Communication Inc.: Speech recognition solutions. www.nuance.com/for-
business/by-solution/speech-recognition/ (2014)

5. Young, S., Evermann, G., Gales, M., Kershaw, D., Moore, G., Odell, J., Ollason,
D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book, Version 3.4. Cambridge
University, Cambridge, UK (2006)

6. Lee, A., Kawahara, T.: Recent development of open-source speech recognition
engine Julius. In: Proc. of the APSIPA ASC, Los Angeles, USA (2009)

7. Huggins-Daines, D., Kumar, M., Chan, A., Black, A., Ravishankar, M., Rudnicky,
A.: Pocketsphinx: A Free, Real-Time Continuous Speech Recognition System for
Hand-Held Devices. In: Proc. of the ICASSP, Toulouse, France (2006)

8. Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., Warmuth, M.,
Wolf, P.: The CMU SPHINX-4 Speech Recognition System. In: Proc. of the
ICASSP’03, Hong Kong, China (2003)

9. Lee, K.F., Reddy, R.: Automatic Speech Recognition: The Development of the
Sphinx Recognition System. Kluwer Academic Publishers, Norwell, MA, USA
(1988)

10. Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hanne-
mann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely,
K.: The Kaldi speech recognition toolkit. In: Proc. of the ASRU, Hawaii, USA
(2011)

11. Rybach, D., Hahn, S., Lehnen, P., Nolden, D., Sundermeyer, M., Tüske, Z., Wiesler,
S., Schlüter, R., Ney, H.: RASR—The RWTH Aachen University open source
speech recognition toolkit. In: Proc. of the ASRU, Hawaii, USA (2011)

12. Zweig, G., Nguyen, P.: SCARF: A segmental conditional random field toolkit for
speech recognition. In: In Proc. of the Interspeech, Makuhari, Japan (2010)

13. Lujn-Mares, M., Tamarit, V., Alabau, V., Martnez-Hinarejos, C.D., i Gadea, M.P.,
Sanchis, A., Toselli, A.H.: iatros: A speech and handwritting recognition system.
In: V Jornadas en Tecnologas del Habla (VJTH’2008). (2008) 75–78

14. Murveit, H., Cohen, M., Price, P., Baldwin, G., Weintraub, M., Bernstein, J.: SRI’s
DECIPHER system. In: Proc. of the Workshop on Speech and Natural Language.
HLT ’89, Stroudsburg, PA, USA, Association for Computational Linguistics (1989)
238–242

15. Moore, D., Dines, J., Magimai-Doss, M., Vepa, J., Cheng, O., Hain, T.: Juicer: A
weighted finite-state transducer speech decoder. In: 3rd Joint Workshop on Mul-
timodal Interaction and Related Machine LEarning Algorithms MLMI’06. (may
2006) IDIAP-RR 06-21.

16. Baden-Wuerttemberg Cooperative State University Stuttgart, Germany:
OASIS—Open-Source Automatic Speech Recognition In Smart Devices.
(2014) http://www.dhbw-stuttgart.de/themen/kooperative-forschung/fakultaet-
technik/oasis.html.



17. Suendermann, D., Liscombe, J., Dayanidhi, K., Pieraccini, R.: A Handsome Set
of Metrics to Measure Utterance Classification Performance in Spoken Dialog Sys-
tems. In: Proc. of the SIGdial, London, UK (2009)

18. Vertanen, K.: Baseline WSJ Acoustic Models for HTK and Sphinx: Training
Recipes and Recognition Experiments. Technical report, University of Cambridge,
Cambridge, UK (2006)

19. Yao, X., Bhutada, P., Georgila, K., Sagae, K., Artstein, R., Traum, D.: Practical
evaluation of speech recognizers for virtual human dialogue systems. In: Proc. of
the LREC, Malta (2010)

20. Florian Schiel: Verbmobil I - VM1. Bavarian Archive for Speech Signals, Munich,
Germany. (2012) http://www.phonetik.uni-muenchen.de/Bas/BasVM1eng.html.

21. Linguistic Data Consortium Philadelphia, USA: CSR-II (WSJ1) Complete. (1994)
http://catalog.ldc.upenn.edu/LDC94S13A.

22. Wahlster, W., ed.: Verbmobil: Foundations of Speech-to-Speech Translation.
Springer, Berlin, Heidelberg, Germany (2000)

23. Rath, P.S., Povey, D., Vesely, K., Cernocky, J.: Improved feature processing for
deep neural networks. In: Proc. of Interspeech 2013, International Speech Com-
munication Association (2013) 109–113

24. Clarkson, P., Rosenfeld, R.: Statistical language modeling using the CMU-
Cambridge toolkit. In: Proc. of the Eurospeech, Rhodes, Greece (1997)

25. Lange, P., Suendermann-Oeft, D.: Tuning Sphinx to outperform Google’s speech
API. In: Proc. of the ESSV. (2014)


