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Systems, methods, and computer-readable non-transitory
storage medium in which a statistical machine translation
model for formatting medical reports is trained in a learning
phase using bitexts and in a tuning phase using manually
transcribed dictations. Bitexts are generated from automated
speech recognition dictations and corresponding formatted
reports, using a series of steps including identifying matches
and edits between the dictations and their corresponding
reports using dynamic programming, merging matches with
adjacent edits, calculating a confidence score, identifying
acceptable matches, edits, and merged edits, grouping adja-
cent acceptable matches, edits, and merged edits, and gen-
erating a plurality of bitexts each having a predetermined
maximum word count (e.g., 100 words), preferably with a
predetermined overlap (e.g., two thirds) with another bitext.
During the tuning phase, the system is trained by iteratively
translating manually transcribed dictations and adjusting the
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AUTOMATED MEDICAL REPORT
FORMATTING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority from U.S. Provi-
sional Patent Application Ser. No. 62/552,860, titled “Patent
sketch: Machine translation postprocessor” (Attorney
Docket No. 103123.0004PRO1), filed on Aug. 31, 2017.
This and all other referenced extrinsic materials are incor-
porated herein by reference in their entirety. Where a defi-
nition or use of a term in a reference that is incorporated by
reference is inconsistent or contrary to the definition of that
term provided herein, the definition of that term provided
herein is deemed to be controlling.

FIELD OF INVENTION

[0002] The field of the invention is automatic formatting
medical reports, and more specifically, generating training
data for training a statistical machine translation system.

BACKGROUND

[0003] The following description includes information
that can be useful in understanding the present disclosure. It
is not an admission that any of the information provided
herein is prior art or relevant to the presently claimed
invention, or that any publication specifically or implicitly
referenced is prior art.

[0004] Medical dictation is helpful in documenting clini-
cal encounters. The dictated material can be transformed
into a textual representation to be printed as a clinical letter
or inserted into electronic medical record (EMR) systems.
Automated speech recognition (ASR) can transform spoken
words into plain text. Since ASR output is transcribed
verbatim from speech, it contains command words, peti-
tions, and grammatical errors, etc., and the text is typically
case insensitive and contains only alphabetic characters
without necessary punctuations. Therefore, post-processing
is required to transform ASR output into clinical letters that
follow rigorous formatting standards. Major responsibilities
of post-processing include: truecasing, punctuation restora-
tion, carrying out dictated commands (e.g., ‘new paragraph’,
‘scratch that’), converting numerical and temporal expres-
sions, formatting acronyms and abbreviations, numbering
itemized lists, separating sections and section headers, and
inserting physician “normals” (sections of boilerplate text or
templates).

[0005] Conventional post-processing approaches are pre-
dominantly rule-based. For example, U.S. Pat. No. 7,996,
223 to Frankel teaches a post-processing system configured
to implement rewrite rules by formatting raw speech recog-
nition output into formatted documents and reports. These
rule-based approaches are subject to serious disadvantages
in practical use. For one, the task may become overly
complex over time through the introduction of specific rules
for certain hospitals or physicians. Another problem is that
these systems must follow an ASR stage, where unforeseen
errors may interfere destructively with post-processing, for
which rules or models are typically designed or trained for
idealized transcriptions.

[0006] PCT Patent Publication No. WO2017130089A1 by
Hasan et al (hereinafter “Hasan™) teaches a paraphrase
generation system using data-based machine modeling to
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convert complex clinical jargon into easier alternative para-
phrases. However, Hasan does not address formatting. U.S.
Pat. No. 7,813,929 to Bisani (hereinafter “Bisani”) teaches
using a probabilistic word substitution model to generate an
output structured sequence that has the highest probability
from an unstructured speech recognition text. Although
Bisani’s system is trained with archived dictations and
corresponding text documents that are cleaned (e.g., remov-
ing page headers and footers), tagged (e.g., identification of
section headings), and tokenized, the training data used in
Bisani still included major unpredictable edits between
dictation and document (e.g., subjective stylistic edits, sec-
tions being reordered, insertion of metadata, patient history,
templates, or other information not present in the dictation).
It is impossible for an automated system to learn those
unpredictable edits in Bisani. Moreover, Bisani’s system
suffers from low accuracy because it is not fine-tuned after
it is trained with training data with unpredictable edits.
[0007] Thus, there is still a need for systems, devices, and
methods to generate high-quality training data efficiently
and to fine-tune a statistical machine translation (SMT)
system, so that the SMT system can generate clinical reports
accurately.

[0008] All publications identified herein are incorporated
by reference to the same extent as if each individual publi-
cation or patent application were specifically and individu-
ally indicated to be incorporated by reference. Where a
definition or use of a term in an incorporated reference is
inconsistent or contrary to the definition of that term pro-
vided herein, the definition of that term provided herein
applies and the definition of that term in the reference does

not apply.
SUMMARY OF INVENTION

[0009] The inventive subject matter described herein pro-
vides computer-enabled apparatus, systems and methods in
which a statistical machine translation system for formatting
medical reports is 1) trained using bitexts generated from
automated speech recognition dictations and corresponding
formatted reports and 2) tuned with manually transcribed
dictations.

[0010] Bitexts are parallel training data such that a single
bitext is a string of words from the dictation and the
corresponding string of words from the report. A preferred
method of generating bitexts includes: preprocessing auto-
mated speech recognition dictations; comparing the dicta-
tions with the corresponding formatted reports to identify
matches and edits between each dictation and its corre-
sponding report using dynamic programming; merging
matches with adjacent edits to produce merged edits; cal-
culating a confidence score for each match, edit, and merged
edit; identifying acceptable matches, edits, and merged edits
that have an overall confidence score that is higher than a
predetermined threshold; grouping adjacent acceptable
matches, edits, and merged edits into a single piece of bitext
having a predetermined maximum word count (e.g., 100
words); and generating bitexts comprising the grouped and
ungrouped matches and edits that are acceptable.

[0011] In preferred embodiments, calculating confidence
score can be achieved by calculating a statistical confidence
score and a heuristic confidence score for each match, edit,
and merged edit, and then calculating a weighted average
confidence score of the statistical confidence score and the
heuristic confidence score for each match, edit, and merged
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edit. In especially preferred embodiments, the statistical
confidence score is given more weight than the heuristic
confidence score. For example, the statistical confidence
score is given 90% weight and the heuristic confidence score
is given 10% weight. Also in preferred embodiments, the
dynamic program considers two words to be a match if the
confidence score (i.e., the probability of a target word
replacing a source word) is at least 0.8.

[0012] It is contemplated that edits include substitutions,
inserts and deletes. Preferably, acceptable substitutions have
a minimal confidence score of 0.1, acceptable inserts and
deletes have a minimal confidence score of 0.37, and all
matches pass confidence checks. Contemplated method of
merging of adjacent matches and edits involves using a
heuristic algorithm. Contemplated method of grouping of
adjacent acceptable matches, edits, and merged edits
involves using an iterative algorithm.

[0013] Training the statistical machine translation system
can be achieved by two phases. During the learning phase,
the SMT system is trained using bitexts. During the tuning
phase, SMT system is trained using manually transcribed
dictations to balance a relative contribution. In preferred
embodiments, the SMT system includes a phrase replace-
ment model, a phrase reordering model, and a monolingual
target language model. In the learning phase, the phrase
replacement model and the phrase reordering model are
trained using bitexts, and the monolingual target language
model is trained using formatted reports. In the tuning phase,
the SMT system is trained using manually transcribed dic-
tations to balance the relative contributions of the phrase
replacement model, the phrase reordering model, and the
monolingual target language model.

[0014] It is contemplated that the SMT system is trained
using an expectation maximization technique. In the tuning
phase, training is performed by iteratively translating the
plurality of manually transcribed dictations and adjusting the
relative model weights until achieving best performance on
objective error metrics, for example, word error rate (WER)
and CDER. It is further contemplated that the SMT system
is at least 10% more accurate after the tuning phase than
before.

[0015] The inventive subject matter also includes a
machine translation postprocessor (MTPP) for formatting
texts from medical dictations using the SMT system trained
as described herein. The system includes a processor con-
figured to execute software instructions, stored on a non-
transitory computer-readable medium, configured to receive
texts transcribed from words spoken by a medical profes-
sional and formatting the texts using the SMT system trained
as described herein. It is contemplated that the automated
system can perform formatting texts in real time or near real
time.

[0016] Various objects, features, aspects and advantages
of the inventive subject matter will become more apparent
from the following detailed description of preferred embodi-
ments, along with the accompanying drawing figures in
which like numerals represent like components.

BRIEF DESCRIPTION OF THE DRAWING

[0017] FIG. 1 is a flowchart depicting contemplated steps
in preferred methods of generating bitexts for training a
statistical machine translation (SMT) system.

[0018] FIG. 2 is a flowchart depicting contemplated steps
in preferred methods of training a SMT system.
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[0019] FIG. 3 is a schematic of an embodiment of a
machine translation postprocessor (MTPP) using MT to
perform translation.

[0020] FIG. 4a is an example of an automated speech
recognition dictation, produced by an ASR.

[0021] FIG. 44 is a formatted report generated from the
automated speech recognition dictation of FIG. 4a.

[0022] FIG. 5is an overall schematic of preferred methods
of generating bitexts and preferred methods for training the
SMT system using the bitexts.

[0023] FIG. 6 is a schematic of a preferred method of
using the SMT system in FIG. 5 to produce a formatted
report.

DETAILED DESCRIPTION

[0024] Throughout the following discussion, numerous
references will be made regarding servers, services, inter-
faces, engines, modules, clients, peers, portals, platforms, or
other systems formed from computing devices. It should be
appreciated that the use of such terms is deemed to represent
one or more computing devices having at least one processor
(e.g., ASIC, FPGA, DSP, x86, ARM, ColdFire, GPU, multi-
core processors, etc.) configured to execute software instruc-
tions stored on a computer readable tangible, non-transitory
medium (e.g., hard drive, solid state drive, RAM, flash,
ROM, etc). For example, a server can include one or more
computers operating as a web server, database server, or
other type of computer server in a manner to fulfill described
roles, responsibilities, or functions. One should further
appreciate the disclosed computer-based algorithms, pro-
cesses, methods, or other types of instruction sets can be
embodied as a computer program product comprising a
non-transitory, tangible computer readable media storing the
instructions that cause a processor to execute the disclosed
steps. The various servers, systems, databases, or interfaces
can exchange data using standardized protocols or algo-
rithms, possibly based on HTTP, HTTPS, AES, public-
private key exchanges, web service APIs, known financial
transaction protocols, or other electronic information
exchanging methods. Data exchanges can be conducted over
a packet-switched network, a circuit-switched network, the
Internet, LAN, WAN, VPN, or other type of network. The
terms “configured to” and “programmed to” in the context of
a processor refer to being programmed by a set of software
instructions to perform a function or set of functions.
[0025] While the inventive subject matter is susceptible of
various modification and alternative embodiments, certain
illustrated embodiments thereof are shown in the drawings
and will be described below in detail. It should be under-
stood, however, that there is no intention to limit the
invention to the specific form disclosed, but on the contrary,
the invention is to cover all modifications, alternative
embodiments, and equivalents falling within the scope of the
claims.

[0026] The following discussion provides many example
embodiments of the inventive subject matter. Although each
embodiment represents a single combination of inventive
elements, the inventive subject matter is considered to
include all possible combinations of the disclosed elements.
Thus if one embodiment comprises elements A, B, and C,
and a second embodiment comprises elements B and D, then
the inventive subject matter is also considered to include
other remaining combinations of A, B, C, or D, even if not
explicitly disclosed.
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[0027] In some embodiments, the numbers expressing
quantities or ranges, used to describe and claim certain
embodiments of the invention are to be understood as being
modified in some instances by the term “about.” Accord-
ingly, in some embodiments, the numerical parameters set
forth in the written description and attached claims are
approximations that can vary depending upon the desired
properties sought to be obtained by a particular embodiment.
In some embodiments, the numerical parameters should be
construed in light of the number of reported significant digits
and by applying ordinary rounding techniques. Notwith-
standing that the numerical ranges and parameters setting
forth the broad scope of some embodiments of the invention
are approximations, the numerical values set forth in the
specific examples are reported as precisely as practicable.
The numerical values presented in some embodiments of the
invention can contain certain errors necessarily resulting
from the standard deviation found in their respective testing
measurements. Unless the context dictates the contrary, all
ranges set forth herein should be interpreted as being inclu-
sive of their endpoints and open-ended ranges should be
interpreted to include only commercially practical values.
Similarly, all lists of values should be considered as inclu-
sive of intermediate values unless the context indicates the
contrary.

[0028] As used in the description herein and throughout
the claims that follow, the meaning of “a,” “an,” and “the”
includes plural reference unless the context clearly dictates
otherwise. Also, as used in the description herein, the
meaning of “in” includes “in” and “on” unless the context
clearly dictates otherwise.

[0029] All methods described herein can be performed in
any suitable order unless otherwise indicated herein or
otherwise clearly contradicted by context. The use of any
and all examples, or exemplary language (e.g., “such as™)
provided with respect to certain embodiments herein is
intended merely to better illuminate the invention and does
not pose a limitation on the scope of the invention otherwise
claimed. No language in the specification should be con-
strued as indicating any non-claimed element essential to the
practice of the invention.

[0030] Groupings of alternative elements or embodiments
of the invention disclosed herein are not to be construed as
limitations. Each group member can be referred to and
claimed individually or in any combination with other
members of the group or other elements found herein. One
or more members of a group can be included in, or deleted
from, a group for reasons of convenience and/or patentabil-
ity. When any such inclusion or deletion occurs, the speci-
fication is herein deemed to contain the group as modified,
thus fulfilling the written description of all Markush groups
used in the appended claims.

[0031] FIG. 1 is a flowchart depicting contemplated steps
in preferred methods of generating bitexts for training a
SMT system. In Step 101, a corpus comprising automated
speech recognition (ASR) dictations and formatted reports is
obtained. The dictations are generated by an ASR system.
Formatted reports are manually generated by trained medi-
cal transcriptionists in the course of providing medical care.
In preferred embodiments, each of the formatted reports
corresponds to only one automated speech recognition dic-
tation. However, it is contemplated that a formatted report
can correspond to several automated speech recognition
dictations, and an automated speech recognition dictation
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can correspond to several formatted reports. As used herein,
“correspond” means that the dictation was originally relied
upon by a medical transcriptionist to write the formatted
report. Preferably, actual clinical notes are used. It is con-
templated that reports and dictations can be obtained from a
variety of specialties at hospitals.
[0032] SMT requires sentence-aligned data, or bitexts:
parallel pairs of translational equivalent sentences in source
and target languages. The source language is the output from
a speech recognition system, usually unformatted text tran-
scripts (i.e., hypotheses), although formatting elements can
be represented as words. The target language (output of the
machine translation postprocessor) is a fully formatted
report, or at least formatted texts representing formatting
elements as words that can be easily converted into the final
text of a final clinical report. Hypotheses and reports cannot
be naively used as translational equivalents because there
are too many discontinuities between the two. For example:
the header and footer of a report often have very different
spoken forms in the dictation, or none at all; errors and
corrections spoken in the dictation (“scratch that,” e.g.) are
not present in the report; and reports may contain boilerplate
sections that correspond to only a few words in the tran-
script. (Additionally, many reports are too long to reason-
ably use for SMT at all.) In short, the SMT system will fail
to learn accurate translations without better alignments
between source and target.
[0033] Ideal SMT training data will be parallel source
(ASR hypothesis) and target (report) text that contains the
types of systematic differences that need to be learned, and
later applied when the system is put into production and
asked to decode arbitrary inputs. In preferred embodiments,
input-output training pairs are created as lengthy as possible
while still being representative of these differences. For
example, the report text

[0034] . . rem onset from sleep onset was 1 4 3

minutes. <para> HEADER_START sleep architecture
is as defined HEADER_END stagei1_ 1% ...

and the dictation text

[0035] ...r_e_m onset from sleep onset was hundred
and forty three minutes next line sleep architecture is as
defined colon stage one eleven percent . . .

will ultimately be considered a single input-output pair for
training SMT, even though there are phrasal substitutions
between them (as shown in bold); the SMT system will learn
to make substitutions such as these. Note that, as mentioned
above, numerals and formatting elements in this example
report text are represented as words.

[0036] Step 110—preprocessing ASR dictations. All
reports are subjected to text preprocessing to better enable
the translation system to reproduce punctuation and other
formatting elements as well as to combat problems of
sparsity for numerals. Steps include:

[0037] Step 111—Punctuation marks are split from
adjacent words and become their own tokens.

[0038] Step 112—Whitespace other than spaces is
replaced with dummy tokens, with unique tokens for
newlines, paragraphs (2 or more newlines), and tabs.

[0039] Step 113—Numerals, times, and dates are bro-
ken into their digits, with ‘_’ signaling continuation: for
example, ‘2016’ becomes four tokens, ‘2_°, ‘0_", ‘1_’,
‘6’. Times and dates have dummy tokens for the
separators /> and :’.
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[0040] Step 114—Numbered lists have line-initial num-
bers replaced with dummy tokens. The first item in a
numbered list has one token (‘NUM_LIST_1"), and all
subsequent numbers have another (‘NUM_LIST_8).
Analogous dummy tokens also exist for lettered lists.

[0041] Step 115—Headers, defined as between 1 and 6
words on a line without intervening punctuation, are
surrounded by ‘HEADER_START’ and ‘HEADER_
END’ dummy tokens.

[0042] Step 120—Dynamic alignment. This step uses
dynamic programming (DP) to identify matches and edits of
one or more words between each dictation and its corre-
sponding report. Alignments between source and target texts
are obtained using DP. The algorithm used is similar to a
basic DP program used, for example, to calculate Leven-
shtein distance between two strings, but with some key
modifications that promote longer matches and substitutions
as well as matches (summarized in table below).

[0043] The differences between the basic DP can be sum-
marized as follows:
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this probability. This may be the case for numerals and other
predictable elements: the word ‘six’ in a dictation is almost
always replaced with the digit ‘6’ in the report, for example.
If these word replacement statistics are not available, then all
non-perfect matches will be considered substitutions.
[0049] Step 130—Merging adjacent matches and edits.
Before calculating the confidence of all matches and edits,
some matches and edits are merged together to form a
merged edit according to a heuristic algorithm. In preferred
embodiments, every single-word match will be merged with
a preceding edit of three or fewer words and with as many
consecutive following edits of three or fewer words as
possible; the resulting span will be considered a substitution.
[0050] The goal of merging is to produce longer ranges
that will have higher confidence. An example situation in
which this would be useful is when two short substitutions
surround an exact match of one word: this entire range will
be scored with a higher confidence if considered as one long
substitution, whereas either or both of the two short substi-
tutions may {fail to reach the confidence threshold on their
own.

Basic DP

DP in the current invention

Matches between source and target rely on

Non-exact matches are possible on second

exact string match between the two words and and future runs of the algorithm (see below

always incur a cost of 0.
small cost.

for details); these matches will incur some

Substitutions can only be between single words. Phrases of more than one word can be

substituted for other phrases.
All edits (insertions, deletions, and substitutions)Edits that extend a previous edit
(lengthening a phrase of deleted words,

incur a fixed cost of 1.

e.g.) incur a smaller cost (2) than starting
a new edit (4 for insert/delete, 5 for

substitute).

[0044] For example:

[0045] Hypothesis: patient was last seen on july five

two thousand seventeen with complaints of
[0046] Report: patient was last seen on 7 DATE_SEP 5
DATE_SEP2 0 1 7 with complaints of

[0047] The DP will consider the bold phrase to be a single
long substitution, and the non-bold text on either side to be
matches. Under a “vanilla” (single-point edits only) DP, 5
substitutions and an additional 3 deletions to go from the text
on the right to the text on the left would be needed. But this
would be uninformative because it does not capture the fact
that the bolded phrases indicate the same thing; furthermore,
it would be arbitrary which words are considered subs
versus deletions (of the 8 words you need to deal with on the
right side, 3 of them must end up being deletions because
there is no word on the left to substitute them for). Edits that
extend a previous edit . . . incur a smaller cost (2) than
starting a new edit (4 for insert/delete, 5 for substitute). So
the edit here “costs” 5 for the first edit plus 2*7 for each
additional substitute/delete added to the phrasal substitution,
for 19 total; considering this 5 subs+3 deletes would be a
total cost of 37, so the DP goes with the cheaper alternative
19).
[0048] In certain conditions, it is possible for two words to
be considered a match even if they are not a perfect string
match. This can only occur if the SMT system has already
been trained at least once, as this training will produce word
replacement statistics as a by-product. (Note that this train-
ing refers to a much later stage, as described below in Step
210.) In preferred embodiments, if the probability of a target
word replacing a source word is determined using this
method to be at least 0.8, then the two words will be
considered a match by DP and will incur a cost of 1 minus

[0051] Step 140—Calculating confidence. For each match
or edit, a confidence score between O and 1 is calculated
using a combination of a heuristic and statistical method.
Scores from each method are averaged, with much higher
weight given to the statistical score in preferred embodi-
ments. For example, in one preferred embodiment, the
statistical score is given 80 percent weight, while the heu-
ristic is given 20 percent weight. In another preferred
embodiment, the statistical score is given 95 percent weight,
while the heuristic is given 5 percent weight. Similar to the
probabilistic match used in DP, if the SMT model has not
been trained at least once, the statistical method cannot be
used, and all weight is given to the heuristic.
[0052] The statistical method of calculating confidence
relies on creating word-to-word alignments for a phrase by
finding the pairing with the highest conditional probability
of target word given source word for each word in the target.
The final confidence score is the probability averaged over
all words. As with the DP, these single-word probabilities
are estimated from the counts of word-to-word alignments
generated in the initial phase of SMT training.
[0053] For the heuristic method, edits are given confi-
dence scores based on their length, type of change, and the
words present. Confidence scores are higher for longer
substitutions and for shorter inserts and deletes; scores are
also higher if the preceding and following edits are long. All
matches between source and target receive a perfect confi-
dence score of 1. This method is designed to encourage
longer input-output pairs while still retaining high confi-
dence that these pairs are appropriately matched. Consider,
for example, the matching report/hypothesis segment:

[0054] Report: ...6_ 8 6_ <nl> HEADER_START

medical record number 0__8__ 1__
[0055] Hypothesis: . . . six eight five medical record
number is zero eight one . . .



US 2019/0065462 Al

This pairing consists of multiple matches and edits:
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ferred embodiments, the confidence minimum is between

MATCH DELETION MATCH INSERTION MATCH
...6_8 5 <nl> HEADER_START medical record number — 0.8 1 ...

... six eight five — medical record number is zero eight one . . .
[0056] The substitution of letters with numbers is still

considered as a match because the statistics of correspon-
dence between spoken and written digits are so clear. The
alignments done during automatically during SMT training
will very quickly find that 6__ pairs with six, for instance, so
future runs of DP will consider 6  and six to be a match.
[0057] However, the edits all receive relatively high con-
fidence scores because they are short (only one or two
tokens) and because they are surrounded on at least one side
by a long match. Thus, this entire pairing will be effectively
considered a single high-confidence substitution and will
ultimately be used as a single bitext sample for SMT
training.

[0058] Step 150—identifying acceptable matches, edits,
and merged edits that have an overall confidence score
higher than a predetermined threshold (i.e., confidence mini-
mum). Confidence minima are set differently for substitu-
tions, inserts and deletes, and matches (all matches pass
confidence checks). Inserts/deletes have a higher minimum
confidence because these are more likely to be the non-
systematic types of edits (add a medications section, delete
pleasantries, etc.), so it’s undesirable to include them unless
it is fairly confident that they are common or systematic edits
(judged by heuristics and statistics, as described). In pre-

0.01 and 0.2 for substitutions, and between 0.2 and 0.5 for
inserts and deletes, inclusive. In especially preferred
embodiments, the confidence minimum is between 0.05 and
0.15 for substitutions, and between 0.3 and 0.4 for inserts
and deletes, inclusive. Most preferably, confidence mini-
mum for substitutions is 0.1 and 0.37 for inserts and deletes.
[0059] Step 160 (optional step)—grouping adjacent
acceptable matches, edits, and merged edits into a single
bitext. In preferred embodiments, adjacent acceptable
matches, edits, and merged edits into a single bitext having
a predetermined maximum word count. It is contemplated
that an iterative algorithm can be used to traverse all
high-confidence edits and matches and builds windows of
words (“sentences” of training data), preferably between 10
and 1000 words. In especially preferred embodiments, the
maximum is 100 words in length. Contemplated overlap
between windows can vary between 10% and 90%. In
preferred embodiments, the overlap between windows is
between 30% and 80%. In especially preferred embodi-
ments, these windows will overlap by up to two thirds the
width of the window (i.e., 67 words each).

[0060] In the following example, a single long utterance is
split into four shorter, partially overlapping ones:
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Windows will be cut short if there are edits within them that
were scored with low confidence in the previous step, or if
there is an edit spanning the 100-word point. (Whenever
there is a long match that could be added to a window in
progress but is too long, the match is broken in the middle
so that the window is exactly 100 words in length; for edits,
it is not possible to break in the middle without knowing
exact word alignments.)

[0061] Preferably, whenever there is an exact string match
between words or phrases in source and target, that match is
added to the training data as its own “sentence” to help bias
the system towards keeping these words and phrases as they
appear in the source. Because the SMT system is not actually
translating between two different languages, it is safer for
the system to simply reproduce inputs that it does not know
how to translate than to translate them into incorrect words
that were never present.

[0062] Step 170—generating bitexts. Bitexts are gener-
ated by outputting grouped adjacent acceptable matches and
edits, and the ungrouped acceptable matches and edits.
[0063] FIG. 2 is a flowchart depicting contemplated steps
in preferred methods of training a SMT system. In Step 210
Training Phase, the SMT system is trained using bitexts. The
translation engine of the system is a phrase-based SMT
system. (One popular open-source implementation of such a
system is Moses. [See Koehn, P., Hoang, H., Birch, A,
CallisonBurch, C., Federico, M., Bertoldi, N., . . . & Dyer,
C. (2007, June). Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th annual
meeting of the ACL on interactive poster and demonstration
sessions (pp. 177-180), Association for Computational Lin-
guistics.] Training consists of several steps: learning word-
to-word alignments between source and target, learning
phrase reordering (“distortion”) statistics, learning condi-
tional n-gram probabilities for the target language, and
finally tuning the MT model to balance the relative contri-
butions of these subsidiary models. For the monolingual
language model, a 6-gram model is trained with typical
interpolation and backoff parameters using the open-source
KenlL.M toolkit.

[0064] Word-to-word alignments are the first steps of
SMT training and are done using an open-source tool
(Giza++). (“Sentence-to-sentence alignments”=bitexts). The
initial step of SMT training will produce word-to-word
alignments (from sentence-to-sentence alignments), which
can be counted to estimate probabilities of one word in the
source being replaced by any other word in the target. The
translation model relies on word-to-word alignments, which
are learned in a standard fashion using the technique of
expectation maximization; Och and Ney [see Franz J. Och
and Hermann Ney. 2003. A systematic comparison of vari-
ous statistical alignment models. Computational Linguistics,
29(1):19-51.)] offer an explanation of this method specifi-
cally for MT. Subject to these alignments, parallel phrases
between source and target of up to seven words in length
were extracted. Every unique pair of input-output phrases
was kept in a counts table, and these statistics were used to
estimate the conditional probability of any known source
language phrase being translated into any known target
language phrase. During decoding, the log-likelihood of any
hypothesis (h), given an input X, under consideration is
maximized ; in a general form, this is expressed as a sum of
weighted log-probabilities:

P(hlx)=wl *P1(hlx)+w2*P2(hlx)+. . . +wn*Pn(hlx)
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where w1, w2, wn are the weights optimized during tuning,
and P1, P2, Pn are the probabilities assigned from individual
models such as the language model, phrase substitution
model, and reordering model, as well as other constraints
such as a penalty for hypotheses that are too long.

[0065] Step 220—Tuning Phase. The SMT system is
trained using manually transcribed dictations to balance a
relative contribution of a model. To determine the relative
contribution of the phrase, distortion, and language models
in computing likelihoods of translation options at decoding
time, tuning is performed by using minimum error rate
training (Och, 2003): translate all text in a held-out tuning
set (Step 211), iteratively adjusting the weights of each
contributing model until convergence on an error metric
(Step 222).

[0066] In departure from common practices in SMT, tun-
ing of parameters is performed to optimize scores on word
error rate (WER) and CDER (See Gregor Leusch, Nicola
Uefling, and Hermann Ney. 2006. Cder: Efficient mt evalu-
ation using block movements. In Proc. of the 11th Confer-
ence of the European Chapter of the ACL, pages 241-248,
Trento, Italy. ACL.), but not on BLEU, the de facto standard
metric in MT, as BLEU is more relevant to translation
between two different languages than to the problem dis-
cussed here. CDER is included, which assesses only a single
penalty for “block™ movements, to reduce the impact on
tuning when entire sentences are reordered between the
dictation and final letter; note that WER would assess
numerous single-word insertion and deletion penalties in
such a case.

[0067] Superior translation results are obtained when
training the phrase model on ASR hypotheses (the same
types of inputs that the system in production use expects) but
tuning on manual transcriptions of speech, which appear
similar to ASR hypotheses but contain far fewer errors.
Thus, the inexpensive process of ASR decoding is used to
generate the training data from speech and commission
manual transcriptions only for the small tuning set.

[0068] Decoding and post-editing. Decoding is performed
by choosing the most likely sequence of target-language
words according to the tuned model. The hypothesis space,
which stores all possible outputs during the decoding pro-
cess, is kept to a computable size using an implementation
of' beam search. [See Koehn, P. (2004, September). Pharaoh:
a beam search decoder for phrase-based SMT models. In
Conference of the Association for Machine Translation in
the Americas (pp. 115-124). Springer, Berlin, Heidelberg. |

[0069] Following decoding, rule-based post-editing is
done to generate human-readable output. This editing is
designed to perfectly reverse the preprocessing stage:
dummy tokens containing _’ are joined to adjacent tokens
without spaces; numbered list dummy tags are replaced with
numbers starting from 1 (or ‘a’ for lettered lists), with the
count resetting at each paragraph; and other dummy tokens
are converted back into their original forms.

[0070] In FIG. 3, the machine translation postprocessor
(MTPP) 310 is a system for automated formatting of medi-
cal dictations. The MTPP comprises at least three major
components: the creation of bitext training data from
matched medical dictations and typed reports, the training
and tuning of a phrase-based SMT system, and the applica-
tion of this system as a streaming service for automated
formatting of medical dictation transcripts.
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[0071] The formatting accomplished by a statistical
machine translation (SMT) system 350. SMT (or MT)
system can be integrated into a system for automated
formatting of medical dictations, machine translation post-
processor (MTPP). MTPP uses statistical machine transla-
tion (SMT) in conjunction with novel methods (e.g.,
dynamic phrase-to-phrase alignment and a hybrid heuristics-
and statistics-based procedure to identify high-confidence
regions) to generate parallel training data from speech
transcripts and manually formatted reports. The SMT system
is trained with the parallel training data.

[0072] FIG. 4a is a raw output 410 of a medical speech
recognizer, without formatting. The raw output 410 is the
input of a MTPP. FIG. 45 is an output 420 of a MTPP, with
correct formatting. The output 420 of the MTPP is a fully
formatted report, or at least formatted texts that can be easily
converted into the final text of a final clinical report.
[0073] FIG. 5 is an overall schematic of preferred methods
500 of generating bitexts for training a SMT system and
training the SMT system. In Step 510, Matched sets of audio
and fully formatted medical reports (i.e., one dictation per
report) are obtained. In step 520, small set is sent for manual
transcription. In step 530, a large set is sent through speech
recognition. In step 540, the large set is then processed
through a bitext generation system. Dynamic programming
produces phrase-to-phrase (between ASR hypothesis and
report); these edits are merged where appropriate, then
filtered based on a score that is assigned by a mix of statistics
and heuristics (and the statistics are updated with every run,
as shown in the figure); finally, bitexts (the actual currency
of MT training) are extracted according to a sliding 100-
word window. In Step 550, the bitexts are used for training
phrase substitution and reordering models. The original
reports are used to train a monolingual (i.e., reports-only)
language model. In step 560, the relative contributions of all
of'these models on the final translation output are optimized.
The small set of manually transcribed dictations and reports
to do this: iteratively translate the whole small set and adjust
the relative model weights until convergence (best perfor-
mance).

[0074] To create bitexts, the system finds alignments
between ASR hypotheses 531 and reports and considers all
regions of those alignments that are the same (“matches™)
and different (“edits,” comprising insertions, deletions, and
substitutions). The initial stage of finding alignments (dy-
namic alignment, step 541) uses dynamic programming
(DP) similar to that used to calculate Levenshtein distance.
In Step 542, The DP identifies matches and edits (e.g.,
insertions, deletions, or substitutions) between words and
phrases in source and target. In Step 543, matches are
merged with adjacent edits. In Step 544, all matches and
edits are then assigned a confidence score based on the
length and type of edit. In Step 545, an iterative algorithm
selects sequences of up to preferably 100 words of parallel
data from source and target languages, using the confidence
metric to exclude ranges that are unlikely to be true matches.
The resulting sequences are then used as bitext training data
for an SMT system.

[0075] FIG. 6 shows a method 600 in which the SMT
model in FIG. 5 is deployed in a production setting, where
incoming ASR hypotheses are translated into reports
intended for manual correction and entry into an EMR
system. It is contemplated that some or all of the contem-
plated other steps can be performed in real time or near real
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time. “Real-time” means input data is processed within
milliseconds so that it is available virtually immediately as
feedback. “Near real-time” means input data is processed
within several seconds.

Exemplary Embodiment

[0076] In this exemplary embodiment, actual clinical
notes are used. Reports and dictations from a variety of
specialties at two different US hospitals were considered. As
required under HIPAA, a Business Associate Agreement
with the Covered Entity that supplied the data.

[0077] A set of 9,875 reports was identified to be available
for manual transcriptions and ASR hypotheses. This set was
split into four smaller sets. The training set was used to
generate source-to-target alignments and build the phrase
and distortion models, as well as to train the monolingual
language model. (The latter was trained on additional text as
well, for a total of 23,754 reports and 14,208,546 words.)
The tuning set was used for tuning the relative contribution
of'the various models for MT. The development set was used
for evaluation along the way. Finally, a blind test set was set
aside for testing purposes.

[0078] For both training and tuning transcripts, hypoth-
eses, or a combination of the two (nine separate conditions)
were used. Hypotheses would seem more relevant to the
desired task; however, they are a noisier source of data than
transcriptions, and it was not guaranteed that the needed
correspondences could be learned through the noise.

[0079] Although the data set contains dictations and their
corresponding reports, these do not represent true bitexts of
the type that are typically used for MT, for several reasons:
boilerplate language or metadata may be added to the letter;
whole sections may be reordered, or even inserted from prior
notes in the patient’s history; pleasantries, discontinuities, or
corrections by the speaker will be omitted. Furthermore,
notes can be thousands of words in length, and it is not
practical to learn alignments from such long “sentences”
given computational constraints.

[0080] To solve these problems, a method was developed
to extract matching stretches of up to 100 words from the
source and target, which can then be used as training
samples. The procedure entails five major steps.

[0081] Step 1—Text preprocessing. Punctuation, new-
lines, tabs, headings, and list items are separated from
adjacent tokens and converted into dummy tokens. All digits
become their own tokens.

[0082] Step 2—Dynamic alignment. All matches and edits
between source and target are determined using dynamic
programming, similar to that used for Levenshtein distance
but with key differences: matches are permitted between
non-exact string matches if they are determined, in a pre-
vious run of the algorithm, to be possible substitutions; edits
can be longer than one token; and extending an edit incurs
a lesser penalty than beginning a new edit.

[0083] Step 3—Merging edits. Short substitutions are
merged together if there is an intervening single-word match
between them, and the entire range is considered a substi-
tution. The resulting edits allow for longer stretches of
parallel sentence data.

[0084] Step 4—Calculating confidence. For every edit, a
score is calculated based on a mix of statistics (calculated
from a prior run of the dynamic program), and a heuristic
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that assigns higher scores to longer substitutions, to shorter
insertions or deletions, and to edits that are adjacent to other
long edits.

[0085] Step 5—Extracting sentences. An iterative algo-
rithm traverses all edits and matches from left to right,
building a parallel source-target “sentence” as it goes. A
sentence ends when an edit of too low confidence is reached,
or once it exceeds 100 words. In the latter case, the next
sentence will start one-third of the way through the previous
one, so sentences may overlap by up to 67 tokens.

[0086] Each extracted sentence becomes a training
sample. Any single-word string matches are also written as
training samples—because this is not a typical MT problem
in that the source and target “languages” are both English, it
is desirable to bias the system towards simply regurgitating
input words it does not know how to translate. From 8,775
reports, this method generates many training samples: 4,402,
612 for transcripts, 4,385,545 for hypotheses, and 8,788,157
for the combined set. See Table 1.

TABLE 1

Statistics of the data sets used for training, tuning, development, and
test.

Set # Reports # Words

Training 8,775 4,785,986 (Rep.)
5,363,580 (Tra.)
5,681,630 (Hyp.)
276,551 (Rep.)
311,538 (Tra.)
305,672 (Hyp.)
187,472 (Rep.)
211,740 (Tra.)
209,587 (Hyp.)
177,756 (Rep.)
198,722 (Tra.)
196,198 (Hyp.)

Tuning 500

Development 300

Test 300

[0087] For the translation model, typical statistical MT
techniques are employed. Optimal word-to-word alignments
between source and target were learned using expectation
maximization. Subject to these alignments, parallel phrases
of up to seven words in length were extracted. For the
monolingual language model, a 6-gram model was trained
with typical interpolation and backoff parameters.

[0088] The MT training stage yields a phrase substitution
model and a distortion model. To determine the relative
contribution of the phrase, distortion, and language models
in computing translation option likelihoods, tuning was
performed by minimum error rate training: translate all text
in a held-out tuning set, iteratively adjusting the weights of
each contributing model until convergence on an error
metric. Interpolation of word error rate (WER) and CDER
(which is designed for assessing M T quality on the sentence
level) were used, which only assesses a single penalty for
“block” movements. CDER was included to reduce the
impact on tuning when entire sentences are reordered
between the dictation and final letter; note that WER would
assess numerous single-word insertion and deletion penal-
ties in such a case.

[0089] The MT system be integrated into a complete
software product, which we refer to as the machine trans-
lation postprocessor (MTPP), responsible for all stages of
transformation between the raw ASR hypothesis and the
generated report. Although the bulk of the decisions made
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during this process are handled by MT, the MTPP is respon-
sible for selecting and preparing inputs for MT and trans-
forming outputs into human-readable form. FIG. 1 is a
schematic of an embodiment of a machine translation post-
processor (MTPP) 200.

[0090] As used herein, “daemon” means a computer pro-
gram that runs as a background process, rather than being
under the direct control of an interactive user. “Preamble”
means spoken metadata that is often not present in the final
report. “Levenshtein distance” is a string metric for mea-
suring the difference between two sequences and is defined
by between two words as the minimum number of single-
character edits (e.g., insertions, deletions or substitutions)
required to change one word into the other.

[0091] At the first stage, the preamble and any commands
to insert a template are isolated and not sent to MT. Of the
pieces that are subject to MT, any that exceed 1,000 tokens
are split. The resulting chunks are sent to an MT daemon
which has models pre-loaded into memory and can perform
multiple translations in parallel. To each translated chunk,
truecasing and post-editing is applied, including the steps of
joining digits, formatting headings, counting and labeling
entries of numbered lists, etc. Finally, all chunks are unified
and put into the correct order.

[0092] The preamble detector is based on a two-class
recurrent neural network (RNN) classifier with pre-trained
word embeddings and long short-term memory (LSTM)
units, which tags tokens as either in- or out-of-preamble,
then finds the split boundary according to a heuristic. The
RNN truecaser has a similar architecture but predicts one of
three classes for each token—all lowercase, first letter
uppercase, or all uppercase—through one layer of softmax
output shared across all time frames. This classifier was
trained on automatically generated data from 15,635 reports.
Truecasing is also supported through rule-based decisions as
well as lists of truecased forms compiled from ontologies
and prior reports, which include non-initial capitalizations
(‘pH’, e.g.).

[0093] The performance of all models was assessed in two
text domains: the MT target domain, and the post-processor
error rate (PER) domain. In MT target domain, numerals are
split into individual digits, headers are surrounded by
dummy tokens, and case is ignored. The PER domain is used
to estimate the manual effort required to correct errors in the
hypothesis report. PER can only be calculated from final
outputs of a post-processor, and thus depends upon the
integration with a MTPP.

[0094] PER is calculated similarly to WER except that it
considers punctuation, newlines, and tabs as separate tokens,
and it excludes any detected preamble from consideration
(keeping the preamble leads to a slight increase in PER
globally). PER is an especially harsh metric in real-world
use, as it penalizes ASR errors, post-processing errors, and
any other source of distance between the post-processor’s
output and the final letter following multiple rounds of
manual review.

[0095] In the MT target domain, three standard measures
of MT performance are presented: WER, CDER, and BLEU
(baseline line). Results for all possible configurations of
training and tuning data sources are given in Table 2.
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TABLE 2

Evaluation of test set on different training and tuning configurations
with BLEU, WER, and CDER.

10
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Overall, the MTPP results in a significant decrease in PER
from the previous post-processor: a relative reduction of
21.9% error rate for hypotheses (—y>=4102,p<0.001).

Train TABLE 4
Tune Hyp. Tra. Hyp. + Tra. Metric Comparison of PER in several conditions. Results are reported using
ASR hypotheses as input (“In: hyp.”), as in other experiments, as well
Hyp. 0.742 0.746 0.741 BLEU as using manual transcriptions as input (“In: tra.”).
0.266 0.277 0.262 WER
0.170 0.171 0.170 CDER PER
Tra. 0.754 0.745 0.747 BLEU
0.559 0.276 0.258 WER Method In: hyp. In: tra.
0.164 0.171 0.167 CDER
Hyp. + Tra. 0.751 0.721 0.748 BLEU No post-processing 0.619 0.574
0.273 0.317 0.262 WER Non-MT post-proc. 0.411 0.341
0.166 0.167 0.166 CDER MTPP (best MT model) 0.321 0.271
[0096] Note that these results are on a filtered test set: only [0100] For further context, we also report PER using

source texts of 1,000 tokens or fewer were used (190 out of
300 in the test set), as this was found to be a point beyond
which decoding slowed considerably. Note that all BLEU
are well above 0.7; these may appear to be exceptionally
high scores, but note that the task here is easier than a
“standard” translation task—to give some idea of a baseline,
comparing the totally untranslated dictations in the test set to
their matching reports yields a BLEU of 0.318 (as well as
WER 0.514, CDER 0.483), which would be quite impos-
sible in a case of translating between two different lan-
guages.

[0097] For the realistic evaluation of the complete system,
we present PER measurements on final outputs of the MTPP
in Table 3. Because the MTPP contains logic for breaking up
the translation task across longer notes, no filtering is
necessary and all 300 notes in the test set can be used. We
must emphasize that these results cannot be compared with
any quantities in Table 2, as they are measured in different
domains entirely.

TABLE 3

Evaluation of the test set on different training and tuning
configurations in terms of PER.

Train
Tune Hyp. Tra. Hyp. + Tra.
Hyp. 0.322 0.331 0.324
Tra. 0.324 0.338 0.321
Hyp. + Tra. 0.328 0.349 0.323

[0098] The comparison of PER between all nine condi-
tions suggests that the best results are achieved on training
data that includes ASR hypotheses (test of proportions:
%>=533, p<0.001, when comparing average PER with and
without hypotheses in training). This result makes sense
because the evaluation task is to translate hypotheses,
although we had wondered before if hypotheses were too
noisy to constitute good training data. For tuning data, it
appears that either hypotheses or transcripts yield good
results, but a mixed set is always worse (>=44.8, p<0.001,
comparing average PER when tuned on the mix to PER
when tuned on transcripts).

[0099] To quantify the impact of MT on postprocessing
accuracy, PER of the source hypotheses were measured both
before any postprocessing and after passing through the
baseline post-processor. Results are reported in Table 4.

manual speech transcriptions as input (the rightmost column
of Table 4). This is not a realistic use case, but we provide
the measurements here to give a sense of the effect ASR
errors have on typical PER measurements. The ASR WER
of the MT test set was 0.142—much greater than the
observed PER difference between hypotheses and tran-
scripts, indicating that many formatting errors in PER occur
on the same tokens as ASR errors.

[0101] For the MT models that learn from hypotheses, it
was conceivable that they could actually learn to correct
ASR mistakes by identifying common error patterns and
how they are typically corrected in the final letter. To the MT
system, there is no essential difference between, say, insert-
ing formatting elements around a section header and replac-
ing an erroneously recognized phrase with the intended
phrase from the report; all words, numerals, and structural
elements are tokens alike.

[0102] Indeed, on multiple occasions, the test set of
phrases in MTPP output were more similar to manual
transcriptions of these dictations than to the ASR hypotheses
that served as input to the MTPP. Refer to the examples in
Table 5: each shows a transcript of a segment of speech (first
line), the ASR hypothesis on that same segment (second
line), and the output of the MTPP when given the ASR
hypothesis as input (third line). In each, the MTPP output
contains a bolded segment that is closer to the transcription
than to the hypothesis. (Although note some incomplete
cases, such as “hospitalist was come by and see” in the
second example.) None of the transcriptions from the test set
were ever seen by any system during training, tuning, or
testing (all previous quantitative results used ASR hypoth-
eses, not manual transcriptions, as the source language).

[0103] Referring to Table 5: In each set of three lines, the
first is the manual speech transcript, the second is the ASR
hypothesis of the same audio, and the third is the output of
the MTPP given the ASR hypothesis. Bolded text shows
where the MTPP has generated output closer to the actual
speech than to its input. Note, for the third example, that the
abbreviation ‘a.c.” (ante cibum) indicates to take the medi-
cation before meals, and ‘h.s.” (hora somni) at bedtime.

TABLE 5

Examples where the MTPP has “corrected” ASR errors.

Tra. .. . her mother was here and had them gave her ibuprofen as

soon as she started . . .
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TABLE 5-continued

Examples where the MTPP has “corrected” ASR errors.

Hyp. .. . her mother was here and have him give her an i_v profile
missing she started . . .

MTPP .. . her mother was here and gave her ibuprofen missing, she
started . . .

Tra. in the meantime comma i will have hospitalist come by and
see the patient . . .

Hyp. in the meantime comma i will have our hospital was combine
to the patient . . .

MTPP In the meantime, I will have hospitalist was come by and see
the patient . . .

Tra. carafate one gram a_c and h_s venlafaxine e_r seventy five
milligrams a day

Hyp. carafate one gram a_c_n_h_s meloxicam m e r seventy five
milligrams a day

MTPP 6. Carafate 1 g before meals and at bedtime. / 7. Venlafaxine
ER 75 mg a day.

[0104] Using MT for the post-processing task has numer-

ous advantages over other approaches, including achieving
high level of accuracy, even roundly outperforming a system
containing numerous hand-designed rules and deep learning
approaches that were trained on large amounts of annotated
data.

[0105] Additionally, MT is a better solution for an adapt-
able and improvable system. The core of the system can be
adapted to other dialects of English or even other languages
by retraining the models. Even in the simplest use case,
however, retraining can be periodically undertaken to
improve performance on current data, accounting for pos-
sible changes over time in dictation or report writing style,
as well as any ongoing development of the associated speech
recognizer.

[0106] Another advantage is in the cost of maintaining the
system. Although MT training has relatively high compute
and memory requirements, there is very little cost in human
time to retrain new models. Although use of some transcrip-
tions was required for best results, the exemplary embodi-
ment demonstrates that the entire process can be reproduced
fruitfully without them (and may even be subject to less
unpredictability). To continuously improve a rule-based
system, direct human intervention is required to write and
validate new rules. For any supervised machine learning
modules of a post-processor, human annotators may also be
required.

[0107] The exemplary embodiment is a complete and
validated medical ASR post-processing system that relies on
MT, as well as the novel processing methods required to
ensure that MT is a viable approach for clinical dictations.
The exemplary embodiment has multiple significant advan-
tages compared to traditional rule-based approaches, and
even other machine learning-based ones—not only does the
MT design result in substantially reduced formatting errors,
achieved in part by its ability to correct errors made by the
speech recognizer in the first place, but it can also be
retrained and improved fully automatically, without the need
for costly manual adjustments.

[0108] The exemplary embodiment shows that the SMT
system dramatically outperformed an alternative automated
formatting system, which relied on a combination of rule-
based and machine learning modules. SMT generated supe-
rior results to the alternative method: errors between the
formatted hypothesis (i.e., the output of the SMT system)
and the manually written medical report saw a relative
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reduction of 22% from the alternative system’s error rates.
When given the choice between either ASR hypotheses or
fully manual literal transcriptions to use as source-language
text, best results can be obtained using hypotheses during the
training phase but transcriptions during the tuning phase.
Thus, the inventive subject matter incorporates a step of
manual transcription of a small set of documents for tuning
data. Because the SMT system is trained on ASR hypoth-
eses, it learns to identify and reverse common and/or sys-
tematic errors made by ASR. (See Table 5 for examples.)
SMT handles these substitutions as part of the same phrase
substitution model that handles automated formatting steps
such as the insertion of punctuation, reformatting of dates,
etc.

[0109] ASR hypotheses were considered as a good can-
didate for a training input because the deployment-time
inputs would be of this type as well. However, it was
uncertain that training on hypotheses would be more ben-
eficial than training on manual transcripts, as the former
contain numerous inaccuracies that may have interfered with
the model’s ability to learn common input-output correspon-
dences. That is, if the errors made during ASR are not
systematic or predictable enough, then hypotheses would
constitute data much noisier than transcripts without being
more informative. As it happens, there is enough systema-
ticity to ASR errors that it is helpful to learn their statistics
and common desired replacements.

[0110] Surprisingly, the opposite behavior was observed
with respect to the tuning set: although hypotheses are more
realistic inputs than manual transcripts, tuning on transcripts
yielded a model that achieved significantly lower error rates
when translating a set of hypotheses. It is conceivable that,
as there are so few documents in the tuning set compared to
the training set, the misrecognition-related noise statistics of
the tuning set may not have been representative of this noise
overall, which would have biased the final translation model
towards the particular documents in the tuning set at the
expense of others. Manual transcriptions will not bias the
model towards any pattern of noise, as they are virtually free
of errors.

[0111] It should be apparent to those skilled in the art that
many more modifications besides those already described
are possible without departing from the disclosed concepts
herein. The disclosed subject matter, therefore, is not to be
restricted except in the spirit of the appended claims. More-
over, in interpreting both the specification and the claims, all
terms should be interpreted in the broadest possible manner
consistent with the context. In particular, the terms “com-
prises” and “comprising” should be interpreted as referring
to elements, components, or steps in a non-exclusive man-
ner, indicating that the referenced elements, components, or
steps can be present, or utilized, or combined with other
elements, components, or steps that are not expressly refer-
enced. Where the specification claims refers to at least one
of something selected from the group consisting of A, B, C

.. and N, the text should be interpreted as requiring only
one element from the group, not A plus N, or B plus N, etc.

What is claimed is:

1. A method of generating a plurality of bitexts for
training a statistical machine translation system, comprising:
providing a corpus comprising (i) a plurality of automated
speech recognition dictations and (i) a plurality of
formatted reports, wherein each of the formatted
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reports corresponds to one of the plurality of automated
speech recognition dictations;

preprocessing the plurality of automated speech recogni-

tion dictations;

identifying matches and edits of one or more words

between each preprocessed dictation and its corre-
sponding report using dynamic programming;
merging one or more matches with one or more adjacent
edits to produce one or more merged edits;
calculating a confidence score for each match, edit, and
merged edit;
identifying acceptable matches, edits, and merged edits
that have an overall confidence score that is higher than
a predetermined threshold;

grouping adjacent acceptable matches, edits, and merged
edits into a plurality of grouped acceptable matches and
edits; and

generating a plurality of bitexts, each having a predeter-

mined maximum number of words, comprising the
grouped acceptable matches and edits and ungrouped
acceptable matches and edits after grouping.

2. The method of claim 1, wherein the step of prepro-
cessing the plurality of automated speech recognition dic-
tations comprises:

separating a punctuation mark from an adjacent word into

a separate token;

replacing a whitespace with a dummy token;

breaking a numeral, time, and date into digit;

replacing a numbered list having line-initial numbers with

dummy tokens; and

surrounding a header without intervening punctuation,

with a dummy token.

3. The system of claim 1, wherein the step of calculating
a confidence score comprises:

calculating a statistical confidence score and a heuristic

confidence score for each match, edit, and merged edit;
and

calculating a weighted average confidence score of the

statistical confidence score and the heuristic confidence
score for each match, edit, and merged edit.

4. The system of claim 3, wherein the statistical confi-
dence score is given more weight than the heuristic confi-
dence score.

5. The system of claim 4, wherein the statistical confi-
dence score is given 90% weight and the heuristic confi-
dence score is given 10% weight.

6. The system of claim 1, wherein the plurality of auto-
mated speech recognition dictations comprises a plurality of
source words and the plurality of formatted reports com-
prises a plurality of target words, and wherein a target word
is a match to a source word if the probability of the target
word replacing the source word is at least 0.8, inclusive.

7. The system of claim 1, wherein the step of merging
adjacent matches and edits uses a heuristic algorithm.

8. The system of claim 1, wherein the step of grouping
adjacent acceptable matches, edits, and merged edits uses an
iterative algorithm.

9. The system of claim 1, wherein the predetermined
maximum word count is between 50 and 1000 words,
inclusive.

10. The system of claim 1, wherein a first bitext overlaps
with a second bitext between 30% and 80%.
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11. The system of claim 1, wherein the edits comprise a
substitution, an insert and a delete, an acceptable substitu-
tion having a confidence score of at least 0.05, an acceptable
insert having a confidence score of at least 0.3, and an
acceptable delete having a confidence score of at least 0.3,
inclusive.

12. A method of training a statistical machine translation
system having a plurality of models, comprising:

a learning phase, wherein the statistical machine transla-
tion system is trained using the plurality of bitexts from
claim 1; and

a tuning phase, wherein the statistical machine translation
system is trained using a plurality of manually tran-
scribed dictations to balance a relative contribution of
a model.

13. The method of claim 12, wherein the statistical
machine translation system comprises a phrase replacement
model, a phrase reordering model, and a monolingual target
language model;

in the learning phase, the phrase replacement model and
the phrase reordering model are trained using bitexts
from claim 1, and the monolingual target language
model is trained using the plurality of formatted reports
in claim 1;

in the tuning phase, the statistical machine translation
system is trained using a plurality of manually tran-
scribed dictations to balance a relative contribution of
the phrase replacement model, the phrase reordering
model, and the monolingual target language model.

14. The method of claim 13, wherein the monolingual
language model comprises a 6-gram model trained using the
opensource KenLM toolkit.

15. The method of claim 12, wherein the statistical
machine translation system is trained using an expectation
maximization technique.

16. The method of claim 12, wherein, in the tuning phase,
training comprises iteratively translating the plurality of
manually transcribed dictations and adjusting the relative
model weights until convergence.

17. The method of claim 12, wherein, in the tuning phase,
the statistical machine translation system is trained to opti-
mize scores on word error rate (WER) and CDER.

18. The method of claim 12, wherein the statistical
machine translation system has at least 10% lower error rate
after the tuning phase than before.

19. An automated system for formatting texts from medi-
cal dictation, comprising:

a processor configured to execute software instructions
stored on a non-transitory computer-readable medium,
wherein the software instructions are configured to:

a) receive a portion of texts transcribed from words
spoken by a medical professional;

b) format the portion of texts using a statistical machine
translation system, wherein the statistical machine
translation system is trained using the method in claim
12.

20. The automated system for formatting texts in claim

19, wherein the formatted texts are generated in real time or
near real time.



