
An Artificial Intelligence for the Board Game ‘Quarto!’ in Java

Jochen Mohrmann1,2, Michael Neumann1,2, David Suendermann2
1Hewlett-Packard, Böblingen, Germany

2Baden-Wuerttemberg Cooperative State University (DHBW), Stuttgart, Germany
{jochen.mohrmann,michael.neumann}@hp.com,david@suendermann.com

Abstract
This paper presents an artificial intelligence (AI) for the board
game ‘Quarto!’ in Java. The program uses depth-first search for
decision making. To improve runtime performance, we used alpha-
beta pruning, a transposition table, and a Java constraint solver.
The result of our work is an open-source Java program capable of
beating human opponents in real-time.

Categories and Subject Descriptors I.2.8 [Artificial Intelligence]:
Problem Solving, Control Methods, and Search

General Terms Artificial Intelligence, Alpha-Beta Search

Keywords NegaMax, Alpha-Beta Search, Choco, Constraint Pro-
gramming in Java, Quarto

1. Introduction
‘Quarto!’ is a two-player board game which is a somewhat sophis-
ticated version of the pen-and-paper game tic-tac-toe. There are 16
wooden pieces that can be placed on a board with four times four
fields. Each of the pieces has four binary properties: large or small,
white or black, round or angular, and hollow or solid. Figure 1
shows the board with all pieces. Both players alternately choose
a piece for the opponent to place on an arbitrary field of the board.
I.e., a turn consists of placing a given piece on the board and then
choosing one for the opponent. The first player to complete a hori-
zontal, vertical, or diagonal sequence of four pieces identical in at
least one property, wins.

Even though the ‘Quarto!’ player community is rather small,
the game has some interesting characteristics when it comes to
developing an artificial intelligence (AI) using Java. To the best
of our knowledge, there are no publications in relevant literature
dealing with building an AI for the game ‘Quarto!’ up to now.

The present paper is structured as follows: In Section 2, we com-
pare ‘Quarto!’s properties with other two-player games like chess.
Sections 3 and 4 discuss details on the implementation of the AI in
Java and how we optimized its runtime behavior. Finally, Section 5
will analyze the program’s performance w.r.t. computing time and
strength of the AI against human players before concluding and
outlining our future endeavors in Section 6.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPPJ’13, September 11–13, 2013, Stuttgart, Germany.
Copyright c© 2013 ACM 978-1-4503-2111-2/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500828.2500842

Figure 1. Quarto board with all 16 pieces

2. Classification of the game
In game theory, ‘Quarto!’ is classified as zero-sum game with
perfect information for two players [5]. The term zero-sum game
refers to the outcomes of all players summing up to zero, i.e. a win
for Player A automatically means a loss for Player B. Therefore,
in the following, the outcome of ‘Quarto!’ will be denoted as ’-1’,
’0’ or ’1’ meaning loss, draw or win. The term perfect information
refers to the fact that all players know the state of the game and all
possible actions at any point in time. What makes ‘Quarto!’ special,
is that players do not have their own pieces but share all available
pieces.

The ‘Quarto!’ AI we developed can be classified according
to [6] as a utility-based agent. It uses a heuristic function to evaluate
the outcome of all possible states in the game up to a certain depth
level of the game tree. From the classification of the game, the
PEAS (Performance, Environment, Actuators and Sensors) Clas-
sification for the AI can be derived. The performance measure is
the outcome of the game, which can be a loss, draw or a win. The
environment is made up of the board and pieces. It is fully observ-
able, deterministic, episodic, static and discrete. If two AIs play
the game against each other, the environment can be interpreted as
a competitive multiagent system. The actuators are the decisions
where to place a piece and which piece to choose. At last, the sen-
sors are logical representations of the four times four grid along
with the position of all sixteen pieces.

3. Implementation of the ‘Quarto!’ AI in Java
In this section, we describe the two main components of the
‘Quarto!’ AI we developed. First, the tree search algorithm we
used (alpha-beta pruning) is presented, and the second part deals
with the implementation of a heuristic function required for the
used tree search.

3.1 NegaMax Alpha-Beta Pruning
By regarding all possible moves that can follow a given game state
as the latter’s children, one can interprete the set of all possible
states of ‘Quarto!’ as a search tree, or, more generally, graph. In
this work, we considered three graph search methods:

a) The first approach we analyzed is to simulate all possible games
once and store them in a database along with their expected
reward. Then, at runtime, the AI has to look up the current state
and the associated outcomes for all possible successor moves to
decide what action to take. The problem of this implementation
is the large number of possible states. Since there are 16 pieces
that can be placed on 16 fields on the board, the number of
different states is 16!2 ≈ 4.4 · 1026 (not taking symmetries
into account). Even when considering possible reductions of
the search space (cf. Section 4), the simulation of all possible
games is not feasible without high-performance computers.

b) A dynamic strategy we considered is a variant of the minimax
algorithm called alpha-beta search. In order to make a decision,
the complete tree is searched from the current state to find
the path with the best outcome. In doing so, alpha-beta search
prunes branches which certainly would not be reached. This can
reduce the effective branching factor b to

√
b in the best case [6].

For ‘Quarto!’ having an average branching factor of ba = 8.5,
this would result in a reduction by up to 66%. The average
branching factor ba can be calculated as follows, whereby p
is the number of plies in the search tree and bp the branching
factor at ply p.

ba =
1

p

p∑
i=1

bp (1)

Equation 1 takes not into account that a number of games
end before reaching the deepest ply. With the best reduction
possible, the resulting number of states in the search tree can be
approximated with equation 2.

√
ba

p
=
√
8.5

32
= 7.4 · 1014 (2)

However, this rate can only be achieved if the search algorithm
examines the possible moves in a certain order. Since it is
hard to tell which move should be examined next, the effective
branching factor reduction is less.

c) The third strategy is to search the game tree up to a certain
depth level and make a decision based on a heuristic evaluation
function [5]. This approach is popular in the creation of AIs for
multiplayer games (such as chess [7]) as it allows to control the
complexity of the search tree.

Alpha-beta search is based on the minimax principle that takes
advantage of the players’ goal to maximize their reward thereby
minimizing the opponents’ (zero-sum). Minimax assumes the op-
ponent to play perfectly within the range of given information and
applies a depth-first search where it maximizes the accumulated
reward at players’ turns and minimizes it at the opponents’. Alpha-
beta search comes up with the same answers, but usually in shorter
time. Assuming that the opponent will not choose an action lead-
ing to lower reward than the guaranteed reward of another path,
the evaluation of the path and the whole sub-tree can be skipped,
without losing information [6].

Alpha-beta search uses a window that is set by the values alpha
and beta. While alpha is the minimum value guaranteed, beta is the
maximum accessible value that the opponent has to grant. In the
beginning, these values build up a range from minus to plus infinity,
but they are subject to update. As soon as a state is evaluated,
its reward is compared to the boundaries of the search window.
If the calculated reward of an action exceeds the beta value while
maximizing, the calculation of the sub-tree can be omitted since the
opponent is able to prevent this situation. If a reward undercuts the
alpha value while minimizing, the sub-tree is omitted for the analog
reason.

As ‘Quarto!’ is a zero-sum two-player game (cf. Section 2) the
negamax variant of the alpha-beta search can be used to evaluate
a game state regardless of its owner, i.e. the player who controls
the board and wants to maximize the reward. A state is defined as
the board with sixteen positions and a number of pieces placed on
certain positions. After choosing the piece to be placed next, addi-
tionally, this piece is also included in the state, see Figure 2. While

Figure 2. Game tree of ’Quarto!’

the conventional alpha-beta search implementation swaps between
maximization and minimization of the rewards, the negamax vari-
ant always maximizes the outcome but alternately inverts the search
window and negates results. In ‘Quarto!’, a player takes two actions
during one round, namely placing a piece on the board and choos-
ing the next one. Only after completing both actions, negation is
carried out. After applying negamax alpha-beta search to the cur-
rent state, the winning path is determined. If a transposition table
is used (cf. Section 4.3), a table lookup is carried out to determine
whether an alpha-beta search had been executed on the current state
before in which event the winning path is already known.

One of our goals is to implement an AI that responds within
an acceptable time frame. For a progressed game, the negamax
algorithm may find the perfect solution within time, but for a
nearly empty board, the number of moves to make and the possible
options to take is too high, even with optimizations. Therefore, the
algorithm needs to stop searching at a certain depth level and uses a
heuristic evaluation function for states that are neither wins, losses,
nor draws.

3.2 Implementation of a heuristic evaluation function
Obviously, in ‘Quarto!’, the higher the number of lines that can
be completed with a given piece (rows, columns, or diagonals),
the higher the chance that one of these lines can be ultimately

completed. So, depending on whose turn is to be evaluated, the
number of such possible lines or its negation is expected to serve
well as a heuristic function. By comparing the heuristic values to
the value of a draw (0), the AI may tend to enforce a draw or take a
risk in a certain direction.

In particular, our AI uses the number of lines with three pieces
of an identical property as heuristic value. Thus, the value is in
the range of zero to seven. A game with no combinations of three
pieces of identical properties in a line has the same value as a
draw (0).

4. Optimizations
The game ‘Quarto!’ has some properties which can be used to
substantially reduce computational complexity. We considered a
number of symmetries inherent to the game and also looked at
transposition tables to memorize states evaluated before.

4.1 Finding Symmetries with the Java constraint solver
Choco

We considered three kinds of symmetries in ‘Quarto!’: field sym-
metries and two kinds of piece symmetries (characteristic and bi-
nary). By resolving these, different states can be mapped to indis-
tinguishable equivalence states whose number is much smaller than
that of all possible states. Equivalent boards are determined by ro-
tating or mirroring. Altogether, each equivalence board subsumes
32 symmetric boards. In order to determine the set of all board
symmetries, we used constraint programming [4] as discussed in
the following.

One way to find all board symmetries is to rearrange the pieces
on the fully occupied board in all possible ways and save lineups
that share the same structure as the original lineup. This structure is
composed of ten combinations (four possible full lines along rows,
four along columns, and two along diagonals). Two game boards
are equivalent if each combination of four pieces on the original
board is present on the equivalence board. Hereby, the order within
the four pieces does not matter.

Assume F = {0, . . . , 15} to be the set of the 16 available
pieces, one could uniquely represent an arbitrary subset of pieces
Fsub ⊆ F by means of the sum formula

ϕsub =
∑

f∈Fsub

2f . (3)

An example of an arrangement of 16 pieces on the board together
with the ϕ coefficients of the ten full lines is shown in Table 1.

The objective of our search for board symmetries is to deter-
mine all possible arrangements of pieces, such that the set of ten ϕ
coefficients are the same as on the original board, but not necessar-
ily in the same order. Table 2 shows an arrangement resulting in the
same set of ϕ coefficients like Table 1 by way of flipping multiple
rows and columns.

4680
20 21 22 23 15
24 25 26 27 240
28 29 210 211 3840
212 213 214 215 61440

4369 8738 17476 34952 33825

Table 1. Full ‘Quarto!’ board with ϕ coefficients

The computational cost of an iterative approach examining
16! ≈ 2 · 1013 valid piece arrangements is quite high. Considering
the problem as a Constraint Satisfaction Problem (CSP) [6] can

33825
29 28 211 210 3840
213 212 215 214 61440
21 20 23 22 15
25 24 27 26 240

8738 4369 34952 17476 4680

Table 2. Alternative full ‘Quarto!’ board with the same ϕ coeffi-
cients

save us a lot of time. Constraint programming is a programming
paradigm where a problem is described in a declarative way us-
ing predicate logic [4]. Constraints are logical formulas describing
relations between variables. In constraint programming over finite
domains, these variables are limited to predefined integer domains.
Considering our problem, the sixteen positions of the ‘Quarto!’
board can be denoted as variables Pn where the variable domain
from zero to fifteen corresponds to the piece being placed on the
particular field. Since each piece is unique the first constraint is
that all position variables Pn are mutually different. Now, we need
another ten variables Rm denoting the sums of the rows, columns
and diagonals calculated with Equation 3. The domain of these
variables is composed of the ten values shown at the bottom row
and the right column of Table 1. They also have to be mutually
different because no combination of four pieces can appear more
than once on the same board. The last constraint is that each value
of Rm has to be the sum of the values in one row, column or diag-
onal. Each allocation of the position variables Pn that satisfies all
constraints is a valid equivalent of the original board and represents
one board symmetry.

For the implementation of a constraint solver in Java, we used
the open source library Choco [1]. Since constraint programming
is a paradigm coming from the realm of logic programming and
seems to be used rather for teaching and research than for industry
purposes, the capabilities of Java libraries like Choco, JaCoP [2]
or firstcs [3] are somewhat limited compared to logic programming
languages like Prolog. For example, with JaCoP it is hard to de-
fine non-continuous variable domains. On the other hand, Choco
implements relatively few kinds of constraints. A major drawback
we found, compared to Prolog, is the lack of applying arithmetic
functions on constraint variables. With the libraries we used, it is
not possible to do calculations like adding an integer to a constraint
variable because they have different data types. But there are some
benefits that make Choco a suitable choice for the problem of re-
solving all equivalent ‘Quarto!’ boards. The first one is that it is
easier to work with a Java library instead of an interface to an-
other programming language. The second benefit in our case is a
huge performance gain provided by Choco compared to a similar
solution we implemented in Prolog using the clpfd module (Con-
straint Logic Programming over Finite Domains). With Prolog, the
32 board symmetries were found in about 2 hours, whereas the
Choco implementation on the same machine took only 30 seconds
to complete.

Besides the described field symmetries there are two piece sym-
metries which we found in ‘Quarto!’. We call them characteristic
symmetry and binary symmetry. The first one presents the fact that
the characteristics of the pieces are interchangeable (it does not
matter whether there is a line with three pieces of equivalent color
in a row or whether they are of equivalent size). As a result there
are 4! = 24 equivalent arrangements of the characteristics. The bi-
nary symmetry toggles the value of different characteristics for all
pieces on the board (it does not matter whether there are three black

pieces in a row or three white ones). There are 24 = 16 different
possible combinations.

4.2 Using symmetries to reduce the search space of the game
tree

In our implementation, the state of the game is represented by the
current board together with the next piece to place. This is embod-
ied by an integer array of length 17. Each of the first 16 elements
is either occupied by a piece, represented by its index from zero to
fifteen or empty which is encoded by the value sixteen. The 17th
element presents the index of the next piece to be placed. The index
of a piece is the decimal equivalence of the four binary characteris-
tics of the piece from 00002 to 11112. The array can be viewed as
a 17-digit number, each element representing one digit to the basis
of seventeen. The most significant digit is the first element of the
array, the least significant the piece to be placed. Now we want to
determine one representative out of all symmetrical equivalences
to this setting. In order to get always the same representative we
look for the equivalent setting that minimizes the described num-
ber. This way, it is guaranteed that there is only one representative
for each equivalence class, though it might be obtained using dif-
ferent transformations.

Each possible combination of the three symmetries described in
Section 4.1 is applied to the original board. The value of a digit is
calculated the following way. First, field symmetry is applied. The
piece value of the corresponding element using a certain field sym-
metry is looked up in the original array. If it is not sixteen (empty
field), piece symmetries are applied. According to the field sym-
metry, digits are exchanged and joined with the binary symmetry
value using the logical XOR operation. Beginning with the most
significant one, digits are analyzed one after another. If a digit of
an equivalence exceeds the lowest transformation value that was
found so far, the next combination of symmetries is evaluated. If,
however, the value falls below, a better combination is found. If the
values are identical, the next digit is evaluated. The transformed
state is used for further evaluation of the board. The resulting value
for the reward is the same for each board of the equivalence class.
In order to find the best move, the value of the position or piece has
to be transformed back to the original setting using reverse trans-
formation functions.

4.3 Using a transposition table
Since the rules of ‘Quarto!’ specify neither the order of pieces to
be chosen nor the order of fields to place a piece on, the same
board position can originate from different move sequences, called
transpositions. Thus, the game tree is not an actual tree, but, more
generally, a graph because branches can merge [5]. We use this
property to accelerate the alpha-beta search. When evaluating a
state, it is stored together with the calculated heuristic and the
best decision option in a transposition table. This way, a state can
be looked up in the transposition table first and only needs to
be evaluated if there is no entry in the table yet. To improve the
chance of encountering state in the transposition table, we also use
symmetry equivalences during lookup and storing.

Using transposition tables along with alpha-beta search may
lead to results not in line with the minimax algorithm’s outcome. If
a state is evaluated coming from a specific path, the search window
has a certain size. If the search window leads to a cutoff, the value
of the exceeded border can be saved in the transposition table. If,
however, the same position is reached from a different path and
with a different search window, the cutoff is not guaranteed. The
saved value may not be in line with the best solution. In fact,
the state may be in the path of an optimal solution. To minimize
the influence of this problem, the value of nodes where a cutoff
occurs is not saved in the transposition table. However, this does not

guarantee that the value of an ancestor is not influenced by a cutoff
of one of his descendants.Therefore results may differ depending
on the particular search window.

5. Performance analysis
In order to evaluate the ‘Quarto!’ AI, we analyzed its performance
along two dimensions: intelligence and speed. To assess the for-
mer, we carried out a subjective experiment with ten human play-
ers competing against the AI. To evaluate speed, we measured the
program’s mean execution time per turn in several objective exper-
iments.

In all experiments, we used a notebook with an Intel Core i5
2-core CPU (1.6 GHz) and 4 GB RAM.

5.1 Subjective evaluation of ‘Quarto!”s intelligence
As a preparation, each of the ten subjects, all of which were com-
puter science students and seven of them novices to ‘Quarto!’, got
an explanation of the game and its rules. Then, we demonstrated a
sample run of the program to make the person more familiar with
the user interface which is seen in Figure 3. After these instruc-
tions, each subject played five games with different settings of the
program (different search depths). In Table 3, the results of the ex-
periment are shown. The counts of wins and losses are related to
the program. Overall, the ‘Quarto!’ AI won 34 out of 50 games.

Figure 3. Screenshot of the graphical user interface

Search depth Wins Draws Losses Played games
2 5 0 8 13
5 16 0 5 21
6 13 0 3 16∑

34 0 16 50

Table 3. Overall winning statistics of the ‘Quarto!’ AI against
human opponents

As shown in Table 3, the AI is more likely to lose a game with
the search depth of two which is not surprising since this means that
it looks ahead only one field and one piece choice. As expected, the
winning rate of the AI increases with a growing search depth. For
this experiment, we chose the values five and six because with these
settings, the time of the moves can be still considered acceptable for
playing as described in the following section.

We also analyzed how performance varied depending on whether
players were experienced players or novices. It turned out that the
three expert subjects had a higher winning rate with low search
depths but the number of wins and losses with the search depth
six was very similar to the persons without foreknowledge of the
game. The detailed results are presented in table 4. This indicates
that from a certain depth level of the alpha-beta search also expe-
rienced users have a hard time competing with the AI we build. In
conclusion, this experiment states that we built an artificial intelli-
gence for ‘Quarto!’ which is able to beat humans.

Novices Experts
Search Wins Draws Losses Wins Draws Losses
depth

2 5 0 5 0 0 3
5 14 0 1 2 0 4
6 8 0 2 5 0 1∑

27 0 8 7 0 8

Table 4. Winning statistics of the ‘Quarto!’ AI divided into cate-
gories of human expertise

5.2 Runtime performance evaluation
In Figure 4, the program’s runtime performance is visualized as a
function of the average time per turn over the search depth of the
alpha-beta search. The underlying measured values are shown in
table 5. As expected, execution time exponentially grows, indicated
by an almost straight line on the logarithmic scale of the graph.
This is in line with the number of possible board configurations
growing exponentially when traversing more and more plies of
the game tree. The time for a turn includes both placing a piece
and choosing one for the opponent. Looking at the times for these
two actions separately would create the impression that choosing a
piece is much less time-consuming than placing one. This is caused
by the lookup in the transposition table to search already seen board
configurations which accelerates choosing a piece for the opponent
as the knowledge about the tree search of the previous action of
placing a piece was already prepopulated.

Figure 4. Runtime performance of the program (logarithmic scale)

A value of the search depth that produces a reasonable play-
ing experience is five or maximal six. An average execution time
of about 20 seconds per term may still be acceptable for the game
since the human opponent needs a certain response time as well.
A problem that can come up is that turns can significantly deviate
from the average execution time depending on the game’s history.
During our experiment, the longest time needed for a turn with a
search depth of six was 26.9 seconds as compared to the average

Search depth Time in seconds
2 0.1
3 0.2
4 1.4
5 2.2
6 12.5
7 25.3
8 118.6
9 272.8

10 1507.6

Table 5. Average execution time per move

time of a mere 12.5 seconds. Usually, execution time decreases to-
wards the end of a game due to the lower number of possible al-
ternatives of pieces and empty fields. Figure 5 presents the average
execution time from turn to turn playing with a search depth of six.
In ’Quarto!’ the maximum number of one player’s moves is eight.
The graph in figure 5 depicts seven moves as this was the highest
number of moves reached within our experiment.

Figure 5. Execution time from turn to turn with search depth six

6. Conclusions and future work
The objective of this work was to develop an artificial intelligence
for the board game ‘Quarto!’ in Java and to analyze it with respect
to its computational behavior. As presented in the previous section,
we were able to accomplished this goal. The resulting ‘Quarto!’ AI
was able to beat the clear majority of human players. Among other
things, we found that the application of constraint programming
in Java can produce a substantial performance gain for the task at
hand. For the sake of the interested reader, we decided to release
the Java code of the presented ‘Quarto!’ AI as open source under
the GNU General Public License (GPLv3). It can be downloaded
from http://sourceforge.net/projects/quartoagent.

An outstanding issue is the interference of alpha-beta pruning
with a transposition table described in Section 4.3. This problem
might be solvable by additionally storing the search window of the
alpha-beta search in the transposition table. A way to render the
present AI even more effective is to further increase the search
depth. The following optimizations could be added to this end:
First, the order in which alternatives are evaluated could be aligned
with information from the last search. Checking the best option
from the last execution fist increases the likelihood of finding the
best path directly and therefore increases the expected cutoffs. An-
other optimization would be to begin calculations during the op-
ponent’s turn. In addition, multithreading could be used to evalu-
ate the board in a parallel manner and distributed across multiple

nodes. It has to be assessed how well these techniques combine
with alpha-beta search.

Future work on the project in addition to the aforementioned
improvements includes the development of a Java applet to allow
for playing the game online. As a result, we could collect more
statistical data from games against human players that could be
used to tune the heuristic function and more thoroughly evaluate
the AI’s performance. Also, the release of a smartphone or tablet
app based on the presented Java code is an option to achieve this
goal.

Acknowledgments
We would like to thank all people who were involved in the de-
velopment process and all participants of our experiment. Special
thanks to Ingo Janz who was able to identify the last remaining
piece in the puzzle of resolving symmetries with constraint pro-
gramming.

References
[1] Choco. URL http://www.emn.fr/z-info/choco-solver [re-

trieved 03-24-2013].
[2] JaCoP. URL http://jacop.osolpro.com [retrieved 05-20-2013].
[3] M. Hoche, H. Müller, H. Schlenker, and A. Wolf. firstcs - A Pure

Java Constraint Programming Engine. In M. Hanus, P. Hofstedt, A.
Wolf, S. Abdennadher, T. Frühwirth, and A. Lallouet, editors, Second
International Workshop on Multiparadigm Constraint Programming
Languages - MultiCPL03, 2003.

[4] K. Marriott and P. Stuckey. Programming with Constraints: An
Introduction. MIT Press, 1998.

[5] I. Millington and J. Funge. Artificial Intelligence for Games. CRC
Press, 2nd edition, 2009.

[6] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 3rd edition, 2009.

[7] C. Shannon. Programming a Computer for Playing Chess. Philosophi-
cal Magazine, 7th Series, 41, No. 314, 1950.

