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COMPENDIUM e Most difficult utterances are those which show a po-
tential overlap among several existing classes or which
seem to belong to none of the given classes.

The annotation of hundreds of thousands of utterances for
the training of statistical utterance classifiers requiresire-

ful quality assurance procedure to make the data consistent
and reliable. In this paper, we present five methods to ana-
lyze different aspects of annotated data to ensure their-Com
pleteness, Consistency, Correlation, Congruence andid av
Confusion—collectively referred to as’C

e Utterances may be very vague or exhibit expressions
that do not fit into the expected vocabulary, thus forcing
annotators to heavily interpret vague language.

Practically speaking, all these sources of inconsisterey r
Index Terms— annotation, statistical utterance classifi- quire a revision of the entire corpus at regular intervals. O

cation, quality assurance the one hand, such revision rounds can barely be applied to
the entirety of utterances due to limits of time and resagirce
1. COMMENCEMENT On the other hand, a partial re-annotation—limited to cer-

tain classes or utterances containing certain key wordg—wi
Statistical utterance classification was proposed a demgale hardly cover all inconsistencies in the data. As aforemen-
to introduce natural language in automated dialog applicaioned, we also face a considerable inter-labeler disageee
tions [1]. In order to build a statistical classifier, oneuggs that comes with the fact that hundreds of thousands of utter-
a number of utterances typical of the task and a class assances cannot be labeled by a single person in a reasonable
ciated to each of the utterances conveying their semanticime frame. These effects may lead to a disastrous annotatio
These utterance-class mappings are used to train a statissituation which finally would suggest to limit the data used f
cal model that later serves as a knowledge base to a classifi&aining to a couple of thousand (but clean) utterancesrath
that is to map a new, and unlabeled, utterance to one of tHan the indomitable beast whose unreliability is more harm
set of possible classes. As demonstrated e.g. in [2], the moful than its size is helpful.

training data available, the better classification rates loa This paper investigates five techniques that help to escape
achieved. State-of-the-art classifiers are trained ontagisd this dilemma. They deal with the Consistency of data, its
of thousands of utterances [3]. Completeness, the Correlation among annotators, Comfsisio

The annotation of such a number of utterances may keejp the data and, finally, the Congruence between annotations
several annotators busy for several months. While it is-welland predicted classes—for their leading letter’'s coinuige
known that the combination of different peoples’ annotasio baptized C.
suffers from inter-labeler disagreement [4, 5], intrael
disagreement can also be significant. This is due not only to
the fact that annotators tend to map certain utteranced-to di
ferent classes depending on the time of the day, their mood
and whether they had a coffee before, but there are also o
jective reasons for such inconsistencies:

2. COMPLETENESS

he paradigm “there is no data like more data” is one of the

riving forces of statistical speech and language proogssi

E.g., the performance of speech recognizers or automatic la

e Statistical utterance classifiers are an integral compoguage translation does not seem to get to a saturation point
nent of a dialog system which uses utterance classificaeven with very large amounts of training data [6, 7]. It is-nat
tion to take certain actions. Thus, the semantic meaningral that this paradigm was deemed valid also for the trginin
of an utterance depends on the dialog context in whiclof statistical utterance classifiers.
it occurs. Paradigm changes in the dialog logic may As mentioned in Section 1, the application of the utter-
lead to a change of the canonical assignment betweesnce classifier referred to in this paper aims at providirg th
utterances and classes. correct interpretation of a caller’s natural languageratiee

« More drastically, such a paradigm change can lead t|n the framework of a dialog system. The caller’s speech ut-

th i ¢ | h llansi i Qerance is first processed by a large-vocabulary continuous
et_creaflon_ (i_ nevY classes orine coflapsing or Im"speech recognizer whose utterance hypothesis is theri-class
nation o existing classes. fied by a statistical classifier (details below). In orderrtort

Patent pending. the classifier, speech utterances are collected in a prioduct




| scenario | training utterances accuracy|

Bnot yet annotated incomplete| 97,237 62.6%
W annotated

complete | 25,756 68.9%

Table 1. Comparing the performance of incompletely vs.
completely annotated data for training a statistical atiee
classifier.

To see what impact the absence (or, vice versa, the com-
pleteness) of data has on the performance of a statistieat ut
ance classifier, we conducted a number of experiments out of
which we select only one prototypical case due to the limited
focus of this paper. In this example, we trained a statisti-
cal classifier based on the Naive Bayes approach with boost-
ing [8] on utterances collected from a dialog application fo
cable TV troubleshooting [9].

Fig. 1. Effect of non-complete annotation. The example  One of these classifiers was built according to the greedy
shows the daily transcription/annotation volume of a éerta paradigm “there is no data like more data’—the annotators
application collected over 35 days. Out of 6521 utterancesyere provided 151,184 transcribed utterances and were aske
5530 were annotated, i.e. 84.4%. to annotate as many utterances as possible within a four week
time frame. After the time was over, they had completed

o B 97,237 annotations (64%).
system where a preliminary utterance classifier (mostlyea ru The other classifier was trained based on the thorough

based grammar) or a simple data collection module is impleparadigm “there is no data like complete data’—a similar
mented. The applications discussed in this publication progmount of transcriptions was provided, but the annotators
cess millions of calls per month. Only a fraction of theseyere asked to work on a day-by-day basis, i.e., they were
calls is transcribed and an even lower fraction is annotategupposed to complete the utterances collected over a one-
QUe to limitations of human resources for these processes bgay time period before starting with the next. This resylted
ing mostly manual. after four weeks, in only 25,756 annotations (17% of the
In most cases, the number of transcribed utterances tganscriptions).
growing faster than that of annotations. Due to the above Then, an experiment was carried out in which approxi-
formulated paradigm, the annotators would try to procesgnately 8000 (completely) annotated utterances distimehfr
as many utterances as possible. Therefore, the desired gaiaé training data were used as a test set. Large vocabulary
would seem to be to concentrate primarily on frequent an@dpeech recognition was carried out on these utterances, and
easy utterances whose transcriptions are made availalale ofthe resulting word string was processed by the above de-
daily basis. This means, however, that a certain percemtage scribed statistical classifier. The classification acouraas
utterances remains unprocessed every day, as can be seemigasured as the number of correctly classified acoustitsven
Figure 1. divided by the total number of acoustic events, i.e., also-no
After a reasonable number of utterances has been annsense utterances, background noise, and the like were taken
tated, this data would be split into train and test data, thénto consideration.
former used to build the classifier, the latter for assessing The results are displayed in Table 1. Although the train-
performance in batch experiments. Such experiments ysualing data of the complete paradigm comprises only about a
produce satisfying results suggesting a high accuracyeof thquarter of the other scenario’s data, it outperforms thiedat
classifier. We noticed, however, that adopting this apgroacby 6.3% absolute which equals a relative error reduction of
led to problems. As soon as such a classifier went into produd-6.8%. This example clearly shows that the ‘tail’ of the utte
tion and started taking live calls, its performance de@das ances and classes that is, the less frequent candidates-can i
Why was that? The reason was that we omitted a part gfeed have a significantimpact on the classifier’s performanc
the data (in the example of Figure 1 around 15%) for train-
ing and test, namely that data which did not appear to pro- 3. CORRELATION
duce quick results, i.e., less frequent utterances anduiffi
cases. Since the test data also omitted these cases, this neglthough we have seen that the complete-data rule may be
gence was not obvious in the batch experiments. In produenore powerful than the more-data rule, it occurred to us that
tion, however, around 15% of all utterances for the examplénally, the joint hypothesis “there is no data like more com-
application belonged to the omitted type of utterances whic plete data” holds true. Hence, in order to further push the
have not been used for training and, consequently, resialted performance of a certain application, we relied on a team of
misrecognition in the majority of these cases. up to five annotators working at full time to annotate more




|« [[AL [A2 [ A3 [ A4 | A5 | average] | utterance | class | count|

Al 0.85| 0.59| 0.82| 0.75|| 0.75 need to be turned on | BoxWontTurnOn | 2
A2 || 0.85 0.56| 0.80| 0.77|| 0.75 i need it turned on ServiceNoServicg 5
A3 || 0.59| 0.56 0.58| 0.51 | 0.56 it needs to be turned on BoxWontTurnOn | 3
A4 || 0.82| 0.80| 0.58 0.71|| 0.73 needs to be turned on | BoxOther 2
A5 || 0.75]| 0.77| 0.51| 0.71 0.69

Table 3. Example of an inconsistent annotation of utterances
Table 2. An example of examining inter-labeler correlation determined by bag-of-word matching.
using the kappa statistic.

stemmer algorithm [11].

details see [3]). Different annotators, however, haveedgt _ _ _
opinions about how to label things—sometimes, it is deemed © The order of words is regularized by alphabetic sort.

impossible to find a final agreement on the exact class whergaple 3 shows an example case of similar utterances mapped
certain utterances belong due to differences in annotatiog several classes detected by means of bag-of-word match-
styles. To isolate subsets of the annotators whose appsachng. Again, this example is taken from the utterance classifi
achieve a high level of agreement, we asked them to labgk the open-ended prompt of a cable TV troubleshooting ap-
the same set of utterances independently of each other apgcation.

then applled the kappa statistic to determine the leveltefin Consistency ana|ysis serves several purposes:

labeler correlation [10]. x > 0.7 is usually considered a
sufficient correlation for many tasks.

Table 2 shows values for the kappa statistic for an exam-
ple set of 1000 utterances of the same domain we used in
Section 2 for each of the possible labeler combinationseHer e The rate of confusions per newly annotated utterance is
the intra-annotator comparison featuring the trivial eabf a measure of the task complexity and of the familiarity
x = 1 is omitted. Additionally, the table contains the av- of an annotator with the current task.
erage of the values of each row which, in this case, bears a ) ] o
clear pattern: Annotators AL, A2, A4, and A5 show a rather ©® !t helps detect cases of major confusion which indicate
high agreement, whereas A3's annotation style seems to fol-  that classes should be redefined, collapsed, or split or
low a different direction. This discrepancy may be resolved that annotation instructions are ambiguous.

by intensively training low-performing annotators or dist- e Overall, consistency analysis serves as a training tool
ing them from the present project. for annotators and is used to get several annotators on
the same page and detect cases of high uncertainty.

¢ It helps to remove annotation errors and normalize the
data in order to assure quality and achieve highest clas-
sification performance of the utterance classifier.

4. CONSISTENCY
Having selected a group of annotators adhering the desired 5. CONFUSION

annotation style, we still do not produce a correlation of 1 We mentioned that consistency analysis helps to detect con-

among them. According to Fhe authors eXperience, the annQsions in annotated data. However, there are types of eonfu
tators do not even agree with themselves on certain (compl

cated, vague, or ambiguous) utterances. ble to the annotators. Similar wordings might convey clearl

.TO quantlf_y this effect gnd he_Ip annotators to find CaseYitferent meanings to a human being, but to a machine-based
of inter- and intra-labeler inconsistency, we set up a proce

o . A robabilistic classifier working on automatic speech rego
dure which investigates whethatentical utterances are as- b 9 P 9

) . ion output, such utterances might very well be ambiguous.
sociated with more than one class. These cases are correc%(iI b 9 y 9

R . ) . imple example are the utterances “yes... no!” and “no...
(if mistakes due to oversight), or they are subject to a discu P P y

ion involvi tat dial lication desi yes!” which in a yes/no context are annotatechasndyes,
sion involving annotators, dialog application designers; respectively, since the caller’s attitude is derived framlat-
speech scientists.

est pronouncement. The classifier used in this work, however

. In a sec.ond.st.ep, another coq3|stency companson IS Caft, o5 1ot consider word order, consequently, both uttesance
ried out takingsimilar utterances into account by matching are identical to its knowledge

the bags of words of the analyzed utterances. This represen- In order to derive a picture of where the classifier's weak

tation is u_sed to re(-JIuce redundant information by perfogmin points are, we provide completely annotated and consigtenc
the following steps: checked data to train an initial classifier and apply it tos di
e Stop words are removed according to a list includingtinct set of randomly selected and likewise annotated test u
38 function words. terances. Looking at the confusion matrix of such an experi-
ment points to areas of major confusion which are then sub-
e The remaining words are stemmed using the Porteject to more careful inspection. The example of Table 4 sefer

Sions inherent to the classifier design which may not be visi-



annotated class grammar number of classesrule-based coverage
OOG | no |operatof yes yes/no/operator 4 77.8%
OO0G | 106 | 19 | 26! 13 modem type | 28 57.3%
predicted no | 15 240 | 2 1
class | operator| 2 0 22 0 Table 5. Example of coverage of utterances parsable by the
yes| 13 3 12! 346 initial rule-based grammar for two scenarios.

Table 4. Confusion matrix of a classification experiment for

; . callers are asked for the type of their modems. The answers
ayes/no/operator scenario; numbers are counts of comfssio

tend to be more natural and conversational than in a yes/no
context which explains the lower coverage. Nonetheless,

to a yes/no scenario where we also want to catch operator rg1ore than half of all utterances have a rule-based counterpa
quests. We see that a large percentage of operator regsiestéd their annotations.

assumed to be out-of-grammar (OOG) or confused yéth
7. CONCLUSION

6. CONGRUENCE . .
In this paper, we have shown how @nalysis can be used

In Section 1, we mentioned that, for the initial building of ato assure quality of annotations for the training of stiast
statistical classifier, a reasonable number of utterant#go utterance classifiers. It also includes methods for traiain-
target domain is required. In many conditions, such utternotators, providing means for self-control and -learniiog,
ances can be collected by bootstrapping a manual grammeglecting and adjusting annotators in a team, and for assess
based on sets of expressions expected in the respective caig the overall complexity of an annotation task with regpec
text and using this grammar at the first place in a live systemo the set of classes involved. Some of the presented methods
Utterances processed in this initial framework are codlédct have a direct impact on the accuracy of the utterance clas-

transcribed, annotated, and a first statistical classgibuilt sifier (completeness, consistency) while others help toemak
and tested on annotated reference data. As soon as the si@motations more efficient and reliable.

tistical classifier outperforms the manual version, thestat

is replgced by the for_mer. In regulgr mteryals, new c!ﬁ 8 CROSS-REFERENCES
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