
CONTENDER

D. Suendermann, J. Liscombe, R. Pieraccini

SpeechCycle Labs, New York, USA
{david,jackson,roberto}@speechcycle.com

ABSTRACT
Contender (or what the academic community would refer to
as a light version ofreinforcement learning) is a simple tech-
nique to experiment with a number of competing paths in a
(commercial) spoken dialog system. By randomly routing
certain portions of traffic to individual paths and computing
average rewards for each of the routes, the goal is to find out
which one performs best. This paper is to do away with com-
mon uncertainties on how to set up contender weights, how
much data needs to be accumulated to draw reliable conclu-
sions, and how this all relates to the notion ofstatistical sig-
nificance.

Index Terms— Contender, commercial spoken dialog
systems, statistical significance

1. INTRODUCTION

Most often, commercial dialog systems have to follow severe
contractual restrictions as to how they exactly need to behave.
Business stakeholders and application architects decide upon
how prompts are phrased, when callers are offered to speak
to a human agent, what items are presented in menus, or that
certain caller requests need to be possible at all time during
the dialog (such as “agent”, “help”, or “go back”) indepen-
dently of whether callers actually ever say such things. In a
bureaucratic manner, requirements, design, as well as voice
user interface specifications are defined and are then rigor-
ously implemented.

Considering that high-trafficked commercial applications
are built primarily to

(A) save human operator handling time while

(B) delivering a good user experience,

most of the design principles used to build these applications
focus on positively impacting (A) or (B).

An example: We are looking at a cable TV troubleshoot-
ing application replacing human agents in certain situa-
tions [1]. The original application performed an automated
reboot of a dysfunctional cable box first, and, in case this did
not fix the problem, it instructed the caller how to do a manual
reboot. At some point, the manager of the call center deploy-
ing this application suggested to reverse the reboot order,i.e.,

first manual, then automatic, since he said his center’s human
operators were doing so, and he was convinced this to be the
optimal order.

Traditionally, and depending on the position of the re-
questing party, this kind of requests are implemented without
further questioning. In a post-mortem analysis, the perfor-
mance impact of the change may be measured to prove (or
possibly disprove) the initiator’s arguments. However, indo-
ing so, it happens often enough that a number of disparate
performance metrics are consulted until one proving the ini-
tial argument is found. E.g., in the above example, the origi-
nal implementation may have resulted in a higher automation
rate than the new one, whereas the latter produced lower av-
erage handling times. Automation rate and average handling
time are typical opositional metrics, since failed automation
often results in short calls, as opposed to automated calls of-
ten taking a considerably longer duration1.

Even if the performance metric is not up for discussion,
a comparison of average performance before and after the
fact may not be very reliable. This is simply because of the
time dependence of performance due to seasonal deviations
and special events such as outages, promotions, technical
changes, etc. For example, a recent change to the backend
services of a certain application showed a performance gain
of 1.5 percentage points, but the responsible project manager
asked to be careful with this result since he had reported
similar improvements during the summer season of previous
years without any changes to the application at those times.

A viable solution to this problem seems to be the simul-
taneous deployment of the two systems in comparison and
the routing of reasonable portions of traffic to both of them.
Similarly, a single system can be deployed containing a split-
ting module that, for every call, randomly selects one of its
outbound transitions (paths). Each of the paths leads to an
implementation of one of the competing strategies. This ap-
proach, calledcontender[2], overcomes the time dependence
but comes along with some other questions. In the world of
quick business decisions, already hours after a contender went
into production, decision makers would like to know which of
the systems is the winner. Naturally, responsible analystswill

1In our example application, automated calls took 210 seconds on aver-
age whereas non-automated calls took 139 seconds measured on 7,207,925
production calls.



push back saying that, after a couple of hours, results are not
yet reliable, and one has to wait for a certain degree ofstatisti-
cal significance. So, when are results statistically significant?
We have heard people responding things like

• After two weeks.

• After 10000 calls.

• When the performance difference is at least 1%.

Even if one of the above answers is correct (which they cer-
tainly are not for many possible scenarios), there is some
more questions not yet answered such as

• How do these answers vary for contenders with more
than two paths?

• Is it possible to vary the amount of traffic going down
the path prior to achieving the required statistical sig-
nificance in an attempt to optimize the gross average
performance of the deployment including the contender
stage?

This paper is to answer all the above questions in a mathe-
matically sound fashion. In Section 2, we will briefly reason
about the reward function being the fundamental requirement
for a contender analysis to take place. We will then investi-
gate what exactly statistical significance means in a contender
scenario in Section 3. Finally, in Section 4, we will prove
the impact of a dynamic adjustment of the traffic going down
contender paths. In Section 5, we will summarize our find-
ings and list points we have not yet been able to completely
resolve.

2. REWARD FUNCTION

To avoid situations like the one in our introducing example,
where constant arguments about the performance metric to be
used prevent a contender experiment from being conclusive,
all involved parties have to agree on a single scalar metric
essential for all the further considerations of this paper.A
typical scalar performance metric is the fact whether a call
was automated (A = 1) or not (A = 0). This type of scalar
performance metric is also referred to asreward as done in
many reference publications on machine learning of dialog
management strategies [3, 4] as well as reinforcement learn-
ing [5]2. Hence, if we would want to express a call’s perfor-
mance solely based on whether it was automated or not, our
reward function was

R = A . (1)

Certainly, a single raw metric such as whether a call
was automated, the handling time, the number of operator

2In these disciplines, rewards are usually accumulated overthe multiple
interaction turns of a call, whereas in the scope of our present work, we are
only interested in the final reward of the call.

requests, whether the caller hung up, or the number of recog-
nition failures, to name only a few, is not exactly what the the
application analysis team was searching for. Rather, the ac-
tual reward function can be any type of combination between
these metrics, e.g. a linear combination. If, for instance,only
financial arguments are to be considered (principle (A) in the
introduction), a derivation of a call’s reward could read as
follows:

• Every automated call prevents a human operator from
handling the call and consequently saves a certain aver-
age amountRA.

• On the other hand, every minute of running a spoken
dialog system generates the costRT for hosting and
license fees, telephony, energy, hardware, maintenance,
and so on.

For this simple derivation, the savings (or reward)R produced
by a call with the durationT are

R = RAA − RT T . (2)

As we will see in Section 3, to be able to estimate the sta-
tistical significance of results, we will use a parameterized
model of the probability density function of the reward,f(r).
Let us first derivef for the simple case of the automation-
dependent reward (see Equation 1). When we consider there
is an (unknown) probabilitypA := p(A = 1) that a call will
be automated, then we know thatR = 1 with probabilitypA

andR = 0 with probability1 − pA. Consequently, we obtain
the density function

f(r; pA) = (1 − pa)δ(r) + paδ(r − 1) . (3)

Now, we want to modelf for the case of the financial re-
ward function (Equation 2). This is a little more tricky since
it requires us to model the probability density of the call du-
ration for both automated and non-automated calls. As a typ-
ical probability model for handling times, we want to use the
Gamma distribution here. It is defined as [6]

g(t; α, β) =

{

βα

Γ(α) t
α−1e−βt : t > 0

0 : otherwise
(4)

with the two parametersα (shape parameter) andβ (rate pa-
rameter)3. Figure 1 shows a duration distribution of non-
automated calls to the example cable TV troubleshooting sys-
tem measured on the most recent 622,900 calls handled (July
2010). It also shows the best-fitting Gamma distribution ac-
cording to the least squares method.

In order to derive the density function for the reward func-
tion as a whole, we have to consider

• the probability of automationpA, and

3Sincet is a time variable,β has the units−1, so hasg.



0

0 100 200 300 400 500

measured

model

Fig. 1. Fitting a Gamma distribution to match the probability
density of call durations.

• the fact that the distribution paramaters can strongly
vary between automated and non-automated calls; so
we will distinguish betweenαA, βA andαN , βN .

This leaves us with five free parameters altogether and the
combinedbivariatedensity function

f(r; pA, αA, βA, αN , βN) = (5)

pA · g

(

RA − r

RT

; αA, βA

)

+ (1 − pA)g

(

−
r

RT

; αN , βN

)

.

3. STATISTICAL SIGNIFICANCE

3.1. Why does contender not use common statistical hy-
pothesis tests?

Once a contenderized application goes into production, traffic
is routed down all contender paths. Each of the processed
calls is associated with one of theI paths as well as certain
reward observations:

Ri = {ri
1, r

i
2, . . .} for i ∈ {1, . . . , I} . (6)

Now, rather than computing the average performance for all
elements ofRi to determine the winning path, we want to
follow an approach whereby we estimate how likely it is
that pathi is the actual best-performing path. This approach
follows the principles of statistical hypothesis testing [7] in
that it aims at estimating probabilities for certain hypotheses.
However, after exploring the properties of common test statis-
tics such as t- or z-test, it turns out there are several reasons
we cannot apply them to our current work:

• These statistics can only be applied when comparing
exactly two competitors.

• Statistical tests involving more than two competitors
such as ANOVA [8] or Tukey’s test [9] compare all
competitors in a pair-wise fashion to find out which
ones significantly differ from one another. This is again
not applicable to our scenario which is to determine a
single probability for a given competitor to be the win-
ner.

• The test statistics are imprecise due to certain assump-
tions such as that

– the reward follows a univariate normal distribu-
tion (this is not the case as we saw in the examples
of Section 2),

– that there is a minimum number of samples per
path,

– that the variations of the compared univariate nor-
mal distributions are either known or equal each
other.

3.2. Estimating winning probabilities

Taking all common test statistics aside, let us now attempt
to estimate the winning probability of a contender path using
raw mathematical means and our knowledge about the reward
density.

To begin, we look at a single contender path and assume
we knew its optimal parameterizationa which is the set of
all parameters of the reward function model. The respective
probability density for a single observed call isf(r; a). If
we had processed exactly two calls resulting in the reward
setR = {r1, r2}, there were two orders in which these events
could have happened, and the probability density combination
would have been

f(r1, r2; a) = 2f(r1; a)f(r2; a) . (7)

Generally, we can write

f(R; a) = c
∏

r∈R
f(r; a) (8)

with the normalization constantc. Now, it is time to get a
second contender path into play. Using the above derivations,
we want to know how likely it is that the expected reward of
path 1 given its observation setR1 is greater than that of path 2
given R2. In doing so, we have to consider (i.e. integrate
over) all possible model parameterizations for both paths all
of which could potentially have producedR1 andR2:

p(r1 > r2; R1, R2) = (9)
∫

a1

f(R1; a1)

∫

a2

f(R2; a2) ε(a1, a2) da1da2

with ε(a1, a2) =

{

1 : E(r; a1) > E(r; a2)
0 : otherwise

(10)



whereE(r; a) refers to the expected value ofr given the
modela. To knowp(r1 > r2) in a two-path contender, di-
rectly leads to the winning probabilities

p(1) = p(r1 > r2) and p(2) = 1 − p(r1 > r2) . (11)

In order to extend this derivation to multiple paths, we make
use of the fact that a contender winneri is supposed to out-
perform all other competitorsj; j 6= i. In the list of all I!
possible performance rankings, there are(I − 1)! rankings
with i at the top. E.g., given a four-path contender, we have
(4 − 1)! = 6 scenarios for path 3 to be the winner:

3 1 2 4
3 1 4 2
3 2 1 4
3 2 4 1
3 4 1 2
3 4 2 1

The probabilities for all these scenarios have to be summed
up to yieldith winning probability

p(i) = p(ri > r1 > r2 > · · · > rI−1 > rI) (12)

+ p(ri > r1 > r2 > · · · > rI > rI−1)

...

+ p(ri > rI > rI−1 > · · · > r2 > r1)

where the individual addends can be calculated via an exten-
sion of Equation 9:

p(ri > rj > · · · > rk; R1, . . . , RI) = (13)

∫

ai

f(Ri; ai)

∫

aj

f(Rj ; aj) · · ·

∫

ak

f(Rk; ak) ε(ai, aj , . . . , ak) daidaj . . . dak;

ε(ai, aj , . . . , ak) =

{

1 : E(r; ai) > E(r; aj) > · · · > E(r; ak)
0 : otherwise

3.3. An example

While the above formula apparatus may seem overly complex
and probably gives a slight flavor of intractability, computa-
tional complexity is generally not a problem here. This is
mainly because of the very limited number of contender paths
in most commercial deployments rarely exceeding five or so.
Furthermore, calculation complexity can be largely reduced
by using simple reward functions such as the automation-
based one (see Equation 1). To prove this point, let us con-
sider a 3-path contender and quickly re-iterate over all the
steps explained in Section 3.2.

To get started, it should be pointed out that we have a sin-
gle parametera = pA per path in the automation reward sce-
nario and that the reward set is composed of only two possible
values, 0 and 1. Therefore, we can represent a reward setR
by the counts of ones (c1 and zerosc0). Using Equation 3 for
the specific density function, and understanding that the ex-
pected reward is equivalent to the actual probability of being
automated,E(r; pA) = pA, allows us to rewrite Equation 8
as

f(R; pA) = c
∏

r∈R
f(r; pA) (14)

= c · (f(1; pA))
c1 · (f(0; pA))

c0

=

(

c1 + c0

c1

)

(pA)c1(1 − pA)c0 .

The next step is to insert the result into Equation 13

p(ri > rj > rk; ci
1, c

i
0, c

j
1, c

j
0, c

k
1 , c

k
0) = (15)

(

ci
1 + ci

0

ci
1

) (

c
j
1 + c

j
0

c
j
1

) (

ck
1 + ck

0

ck
1

)

·

1
∫

0

xci
1(1 − x)ci

0

x
∫

0

yc
j
1(1 − y)c

j
0

y
∫

0

zck
1 (1 − z)ck

0 dz dy dx .

Finally, we get the three winning probabilities using Equa-
tion 12 (and discarding the annoying parameter arguments):

p(1) = p(r1 > r2 > r3) + p(r1 > r3 > r2) ,

p(2) = p(r2 > r1 > r3) + p(r2 > r3 > r1) ,

p(3) = p(r3 > r1 > r2) + p(r3 > r2 > r1) . (16)

4. ADJUSTING THE TRAFFIC

As we have now learned how to determine the winning prob-
ability of a contender path, the question arises on how these
findings are to be translated into actions and when to do so.
Does a winning probability of 1% mean we should remove the
path from the contender? Or 5%, or 10%? What if there were
10 contender paths each of which has a 10% winning prob-
ability? What should we do when the progress is extremely
slow? 60% probability after one week, 70% after three weeks,
80% after two months?

In Section 3.1, we have introduced our analysis method
as a statistical hypothesis test similar to established ones such
as t- or z-tests. Those use a p-value and an associated sig-
nificance level to determine whether a difference is assumed
to be statistically different. Common significance levels are
5%, 1%, and 0.1%, so, we could assume similar levels in
our present test. However, the argument made above that,
the more paths are involved, the lesser the individual proba-
bilities become, suggests that the significance level should be
sufficiently small for the task in question.



On the other hand, the more paths are involved, the less
traffic is routed to each of them, and the smaller the signifi-
cance level, the more traffic is required to make a decision.
This conflicting finding is yet another argument to investi-
gate whether actions can be carried out even before statistical
significance was found. Specifically, it is of interest to see
whether the amount of traffic hitting each contender path may
be adjusted to positively impact the gross average reward of
an application. A possible approach would be to adjust path
traffic in a continuous fashion using the winning probabilities
themselves as weights. That is, when a path shows a 90%
probability to be the winner, we route 90% of traffic down
this path.

In the following, we want to find out whether this ap-
proach is actually helpful in terms of the gross average re-
ward. To that end, we compare three different approaches:

(1) Randomly chose a winner.

(2) Chose a winner once its winning probability is above a
certain threshold.

(3) Dynamically adjust traffic based on winning probabili-
ties.

Before we get started, let us agree on some standards:

• If we would know the contender winner from the
very beginning (for example from an octopus), we
could achieve the optimal per-call rewardr̂, the actual
infinite-horizon reward of the best performing path.

• Without loss of generality, let us focus on a two-path
contender.

• Let∆ be the (positive) performance difference between
the actual infinite-horizon rewards of the contender
paths.

• The contender deployment starts at timet0.

Let us get started with (1). If we randomly choose path 1 to
be the winner it will be optimal (r = r̂) with probabilityp and
sub-optimal (r = r̂ −∆) with 1− p. So, the expected reward
at timet0 is

E1(r, t0) = r̂ p + (r̂ − ∆)(1 − p)

= r̂ − ∆ + ∆ p . (17)

Analogously, routing all traffic down path 2 would result in

E2(r, t0) = r̂(1 − p) + (r̂ − ∆)p

= r̂ − ∆ p . (18)

When the decision to route down a certain path is made com-
pletely randomly, then we havep = 0.5 and, consequently,

E1(r, t0) = E2(r, t0) = r̂ − 0.5∆ . (19)

Next, we want to explore option (2). Instead of routing ran-
dom traffic to both paths for the entire time of the deployment,
we only do so until we achieve a probability update at timet1
of

p(t1) = p(t0) + ∆p. (20)

If ∆p > 0, we can now make a hard decision and route all
traffic to path 1:

E1(r, t1) = r̂ − ∆ + ∆(p + ∆p)

= r̂ − 0.5∆ + ∆p∆

> E1(r, t0) . (21)

Otherwise, we would route the traffic to path 2:

E2(r, t1) = r̂ − ∆(p + ∆p)

= r̂ − 0.5∆ − ∆p∆

> E2(r, t0) . (22)

Thus, routing the full traffic to the most probably winning
path after waiting untilt1 outperforms the purely random
choice (1) as we clearly expected.

Finally, let us look at (3), that is, whether probability-
based traffic weighting can be of benefit. Revisiting (2) for
a moment, a typical approach would be to leave 50% traffic
on both paths until, at a timet1, a certain statistical signif-
cance was found (e.g.,p < 5% or p > 95%) and than to route
full traffic to the probable winner. Let us now assume, we an-
alyze the winning probability at a timet′ with t0 < t′ < t1
and find, similar to Equation 20,

p(t′) = p(t0) + ∆p. (23)

As opposed to the above example, this time, we make asoft
decision by routingp(t′) traffic to the respective path. If
∆p > 0, the updated expected reward becomes:

E1(r, t
′) = (0.5 + ∆p)(r̂ − 0.5∆ + ∆p∆)

+ (0.5 − ∆p)(r̂ − 0.5∆− ∆p∆)

= r̂ − 0.5∆ + 2∆2
p∆

> E1(r, t0) . (24)

The equivalent can be shown for∆p < 0. This proves that an
update according to the winning probability is indeed benefi-
cial for the gross reward of an application.

5. SUMMARY AND OPEN QUESTIONS

This paper focused on investigations towards the statistical
significance of contender analyses. We have shown a way to
estimate precise winning probabilities of contender pathsthat
can be used to

• draw reliable conclusions on which path is performing
best, to which degree, and how significant these find-
ings are, and



• to route traffic depending on these probabilities, an ap-
proach we showed to outperform the conventional way
of making hard decisions once statistical significance is
assumed.

There is a number of questions still open with respect to the
current work. Among others, we have to investigate

• how contender analysis relates to the field of reinforce-
ment learning,

• how the presented statistical test can be scaled to a large
number of contender paths (tractability?),

• how the present analysis can cope with parameter-
dependent or interacting contenders,

• how we can (dis)prove that probability-dependent rout-
ing is optimal (we have only shown that it outperforms
the baseline, but are there even better techniques?),

• and, last but not least, how to overcome some of the
paper’s mathematical glitches.
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