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Abstract. We present a speech recognition system for the medical domain whose
architecture is based on a state-of-the-art stack trained on over 270 hours of medical
speech data and 30 million tokens of text from clinical episodes. Despite the acoustic
challenges and linguistic complexity of the domain, we were able to reduce the system’s
word error rate to below 16% in a realistic clinical use case. To further benchmark our
system, we determined the human word error rate on a corpus covering a wide variety
of speakers, working with multiple medical transcriptionists, and found that our speech
recognition system performs on a par with humans.

Keywords: medical speech recognition, human word error rate, parity

1 Introduction

There are several unique challenges in medical-domain automatic speech recognition (ASR).
Acoustically, there is often significant background noise during medical dictations, for exam-
ple, ranging from sirens to office noises to competing talkers and background conversations.
This is a challenge not only because of the lower signal-to-noise ratio, but also because of
the diversity of acoustic environments and noise sources which may affect a given recording.
This is different than, say, a system designed to work with car noise or other known noise
sources. Second, a large number of microphones and dictation devices are used, e.g. Dicta-
phone, SpeechMike, Digital Voice Recorders, or regular telephone handsets, many of which
use special lossy codecs of varying sound quality. Also, the speakers do not maintain any
consistent distance or orientation to the microphone, such that even a single utterance can
vary widely in quality and absolute volume.

Speech in medical dictations differs from normal (conversational) speech in several ways,
although the presence and magnitude of these differences varies from one recording to another.
Thus, dictations are often spoken very rapidly, but other files are found with slower speech
and lengthy hesitations. Many voiced hesitations are also present, as are repeated words and
restarted sentences. Sentences often lack clear juncture, boundaries, or formatting commands.
Even itemized lists are sometimes spoken in rapid succession that is unrevealing of boundaries.
One often gets the impression that the speech is spoken without a sense of a human listener,
or even the intention of being understood, but rather only for required cataloging purposes.
On the other hand, some dictations are spoken with excellent quality by certain physicians
or their professional assistants.

Finally, and perhaps most importantly, is the challenge of highly complex, domain-specific
medical terminology, including thousands of drug names. This presents a significant out-of-
vocabulary challenge and is perhaps why most existing medical ASR work has only taken on
a single domain (usually radiology).



Although medical-domain ASR has been reported in some form since the 1980s [1–3],
all work prior to 1999 used single-word as opposed to continuous ASR, with a single early
exception for German [4]. Early works on continuous medical ASR [5–7] immediately rec-
ognized the importance of including medical domain-specific terminology in the statistical
language model. However, the physicians (usually radiologists) were themselves enlisted to
provide manual corrections to update the ASR lexicon. Only gradually in the 21st century
have a handful of studies begun to use non-physician transcriptions for language model train-
ing. Most reports come from the single domain of radiology (e.g. [8, 9]), although a smaller
number of restricted-domain systems have been reported elsewhere (dermatology: [10]; tem-
poromandibular disorder: [11]). We are developing language model methodology that scales
to larger volumes of data from multiple subspecialties.

We found 45 studies since 1999 that assess the quality of medical ASR, e.g. those covered
in reviews by Hodgson et al. [12] and Hammana et al. [13]. Among the few publications on
speech recognition on medical corpora reporting results in terms of Word Error Rate (WER) is
the work by [14] and [15] on clinical question answering. The latter focuses on spontaneously
spoken medical questions and reports 29.3% for the SRI Decipher system and 37.3% for
Nuance Dragon, Medical version. Both systems were adapted to the specific study domain
by language model adaptation. Nuance Dragon also underwent profile training to enhance
performance. Luu et al. [16] covers nursing handover and reports a WER of 24.6%. Paats et
al. [17] and Alumäe [18] both cover radiology reports in Estonian and report WERs of 18.4%
and 13.7%, respectively.

We found ten studies since 1999 that compare ASR quality with human transcription (HT)
in healthcare. All 10 report more errors with ASR than HT, often substantially more [12, 19–
21]. Where categorized, serious errors were also greater with ASR than HT. For example du
Toit et al. [22] report 9.6% of ASR’d and 2.3% of HT’d charts having ‘clinically significant’
errors, and Basma et al. [23] conclude that ‘major’ errors were 8 times more likely with ASR
than HT.

We report here on our current progress in developing a medical ASR system whose initial
version was discussed in [24]. As indicated in the abstract, our system approaches human
WER in the medical transcription domain covered by the corpus described in Section 2.
Details on how we determined human transcription performance on this corpus are provided
in Section 3. Reaching performance parity in this work was not due to novelty in one particular
part of the ASR methodology, but rather to the accumulation of advances in all stages of the
ASR training and decoding. Therefore, this paper presents an overview of our system with
commentary on each of the stages in Section 4. Results are being discussed in Section 5
followed by conclusion and future outlook in Section 6.

2 Corpus of Medical Dictation

The studies described in this paper were carried out using a massive collection of English
dictated out-patient reports covering a variety of different medical specializations. To perform
the experiments whose details are provided in the sections following, three different types of
corpora were required:

– The first corpus, (M1), contains both audio recordings and textual transcriptions of a
small number of prototypical speakers covering the whole spectrum of difficulty levels
of clinical dictation. We selected a total of nine speakers reaching from excellent, almost
professional speakers dictating in clean office conditions, providing grammatically accurate
sentences and punctuation commands, all the way to ones who dictated in an extreme
rush, mumbling with no natural pauses, flat intonation, and extreme background noise
and reverberation.



M1 M2 M30

Episodes 1 818 4 574 33 684
Speakers 9 233
Duration/h 67 204

Train
Tokens 620 926 1 629 469 29 846 087
Types 9 872 20 203 68 369
Singletons 3 451 (35%) 5 968 (30%) 15 613 (23%)

Episodes 30 88 500
Speakers 6 60

Test
Duration/h 1.0 3.7
Tokens 10 077 28 696 138 792

Table 1. Corpus statistics

– The second corpus, (M2), features a random sample of audio and transcriptions of over
200 speakers in a hospital network representing the natural distribution of users in an
operational scenario.

– The third corpus, (M30), consists of dictations of over 30 thousand outpatient letters
used to build the language model for the clinical speech recognizer.

Detailed statistics of these corpora are provided in Table 1.

3 Human Baseline Performance

Multiple methods to determine human baseline performance on transcription tasks of differing
complexity have been discussed in literature. [25] had several expert transcribers transcribe
long spontaneous utterances of English language learners and compared their transcriptions
with respect to word error rate. In a second phase, transcribers were allowed to choose pre-
ferred transcriptions from the set of available ones and correct them, and in a third phase,
a gold standard transcription was picked by majority vote among all transcribers. Human
word error rates varied between 20.5% in Phase 1 and 5.1% in Phase 3. More recently, [26]
used a two-pass transcription approach comparing a first draft transcription with a second
pass corrected version of another listener. Resulting human word error rates were reported on
two standard research corpora, 5.9% on Switchboard and 11.3% on CallHome. [27] also mea-
sured the human error rate on these standard corpora by coupling three junior transcribers
with a senior listener who performed error correction. The best resulting error rates were
5.1% on Switchboard and 6.8% on CallHome. Especially the discrepancy of the reported re-
sults on CallHome indicates that the measurement of human baseline performance on speech
recognition is not a straightforward task.

In the present work, we followed a similar approach to these recent publications in that we
compared a single pass transcription with one that went through multiple rounds of quality
improvements. These rounds included: First draft of the medical report, quality assurance of
the report to the level that it could be delivered as out-patient letter, and, finally, assuring
that transcription guidelines were properly followed, e.g. that every uttered word is spelled
out. The transcribers used in this study were professionally trained medical transcriptionists
embedded in a private crowd [28], as described in further detail in [29].

In order to cover the full spectrum of difficulty levels of human and automatic transcrip-
tion, we chose the M1 test set for this study. It contains a variety of different recording and
speaking conditions, and has a size of over ten thousand tokens to reliably test for statisti-
cal significance of performance differences. The human word error rate achieved for this set
following the above described methodology was 17.4%.



4 Acoustic and Language Model Training

At the time of decoding, the ASR system requires a language model (LM) and an acoustic
model (AM). The former represents N-gram statistics of words, obtained from text processing.
The latter represents a mapping from an audio file to phonology, which provides the link to
the LM via the lexicon. The lexicon is an a priori mapping from words to phonological
representation (pronunciations). The AM training proceeds in three global stages (Figure 1):
a) feature extraction; b) alignments; c) DNN training. During decoding, only a) and c) are
used; i.e., the features are extracted from test data, and the final DNN model provides the
nonlinear mapping to phonology. The linguistic probabilities are represented by finite-state
transducers (FSTs) [30, 31], which are implemented e.g. in Sphinx-4 [32], the OpenFST library
[33, 34], and Kaldi [35].

Fig. 1. Overview of acoustic model (AM) training for ASR. The deep neural network (DNN) training
takes LM input, alignments (between phonemes and features time-line), and iVectors (iVecs) that
are extracted from the audio features.

a) Feature extraction. This stage transforms the raw acoustic waveform, w(n), sampled
at 8-48 kHz, into a multivariate time-series of C features, sampled at 100 Hz frame rate. As
it turns out, the raw waveform in medical dictations presents with widely-varying dynamic
range. Some recording systems use spectral subtraction [36] or other speech enhancement [37],
which can result in sections of near-absolute silence in some audio files; other sections include
strong background noises (e.g. sirens) and loud speech; and a typical medical-dictation audio
file includes more variability in speech volume and orientation w.r.t. the microphone than typi-
cal in standard speech corpora. Therefore, we have carefully considered waveform root-mean-
square (RMS) normalization, power-normalization of the spectrogram, and mean/variance
normalization of the final features. First, contiguous sections of near-silence (below 0.1% of
max level) are clipped out (Figure 2). Second, the RMS (squared signal smoothed with 200-ms
time-constant) is normalized such that all audio files are scaled to a common 70 dB sound-
pressure level in units of pressure (Pascals), where 70 dB is chosen as the typical normal-to-



loud conversational range [38]. Whereas perceptual loudness correlates to recent amplitude
maxima [39], the use of maxima for amplitude normalization is unstable, as extrema are al-
ways subject to greater statistical variation. We chose the RMS 90-percentile for each audio
file as the normalization point, which we found to be more homogeneous across files. Third,
we considered three methods of power-normalization following the short-term Fourier trans-
form (STFT) log compression (standard), the nonlinear power-normalization (PN) method of
Kim and Stern [40, 41], and their simple PN (sPN) method, which is first-order running-mean
normalization. Preliminary results indicate PN as the preferred method, but these studies
are ongoing and all results reported here use traditional log compression. Finally, the feature
time-series are subjected to per-utterance mean and variance normalization (z-score method
of Figure 2), or per-speaker mean and variance normalization, as in [35]. We are currently
exploring the options shown in Figure 2 with very promising results, but all results presented
in this paper use traditional mel-frequency cepstral coefficients (MFCCs) [42] utilizing the
following options: 25-ms Hamming window, mel-frequency scale [43], no spectral transforma-
tions by PLP [44] or MVDR [45, 46], log compression, cepstral coefficients (CCs), and the
typical lifter (cepstral-domain weighting) used in speech processing (as given by Juang et al.
[47]). For DNN training, we use 40-dim MFCCs, as suggested by the study of Rath et al. [48],
but for alignments we use 13-dim MFCCs with deltas and delta-deltas.

Fig. 2. Overview of acoustic feature extraction for a single utterance. The raw sampled waveform,
w(n), corresponding to a single wav file, is clipped of silent sections, and then RMS scaled into
units of pressure in Pascals, p(n). This is subjected to standard 1st-order pre-emphasis, before the
windowed STFT. Note that n indexes samples at 8 to 48 kHz, whereas t indexes frames at 100 Hz.
The subsequent stages are listed with options as described in the text.

b) Alignments. Transcribed medical dictations provide the correct word sequences for
training, but no temporal information. Alignment to the audio file requires learning a model
to map from acoustic features to phonological sequences, along with the lexicon to map from
phonology to words. Several toolboxes can be used to obtain alignments, for example Praat
[49], HTK [50], Julius [51], Kaldi [35], or RASR [52]. We do not conceive of alignment as a
generic pipeline which is run on the data set at large. Rather, a best alignment can be obtained
for each utterance and retained in the database, with each potentially derived from indepen-
dent sources. The results reported here are based on triphone models [53], implementing a
pipeline of speaker-independent Gaussian mixture models (GMMs) and linear discriminant



analysis + maximum-likelihood linear transformation (LDA+MLLT), followed by speaker-
adaptive training (SAT) using LDA+MLLT and feature-space maximum-likelihood linear
regression (fMLLR).

c) Deep neural network (DNN) training. Although artificial neural networks have been
attempted since the late 1980s in ASR [54], and steadily advanced over the ensuing decades
[55, 56], they have only become the most widely used state-of-the-art method in ASR in the
last five years, joining other fields in the deep learning revolution. For example, the initial
publication of the Kaldi toolkit [35] does not mention DNNs, and the recent theses of Plátek
[57] and Gil [58] use Kaldi for ASR, but no DNNs. Kaldi introduced two DNN methods circa
2013 [48, 59], which we explored along with several other general machine learning toolboxes
(Theano, etc.) for DNN training. For example, Miao [60] developed a hybrid Kaldi-Theano
ASR system.

Another important part of current state-of-the-art ASR practice is the use of i-Vectors
(iVecs) for training the DNN (Figure 1). These are derived by passing the features through
a GMM-based universal background model (UBM), previously trained on the whole corpus
[61, 62]. iVecs were introduced in 2009 for speaker recognition [63], brought into ASR work
in 2011 [64, 65], and just recently used with DNNs for ASR model training [66, 67, 62]. We
specify these dates to reinforce our general point that: although medical ASR was somewhat
negatively viewed one decade ago, it is understandable that newer reports and reviews become
increasingly optimistic. The field of medical ASR is likely only at the beginning of the change-
over to DNN methods and the possibilities implied by near-human performance levels.

The language model used in this work is a conventional trigram model with Kneser-Ney
smoothing. Discounting parameters were optimized by minimizing perplexity on a held-out
set from the M1 training set. Training data comprised both the manual transcriptions in
M1 and M2, and the outpatient letters in M30. The latter differ from transcriptions in that
they contain case distinctions, formatting, punctuations, and numerals that are either absent
or spelled out in transcriptions—e.g., a spoken ‘colon’ in transcriptions versus ‘:’ in letters,
‘twenty-three’ in transcriptions versus ‘23’ in letters. Prior to LM training, we processed M30
to remove formatting and spell out those characters and numerals that are typically spelled
out in transcriptions.

Investigations into more sophisticated language modeling techniques are currently car-
ried out, examples of which are given in Section 6. They will be subject to a future review
publication.

5 Experimental Results and Discussion

As indicated in Section 2, in this study, we carried out two major experiments. The first one
was dedicated to comparing human transcription performance on medical dictation to the
performance of our speech recognition system on a range of difficulty levels. The second one
was to investigate how the presented speech recognition system performs on a comprehensive
selection of speakers, following the distribution in a realistic clinical use case. In the following,
we will present and discuss results of these two experiments.

5.1 Comparing Human and ASR Performance

We trained the recognition models according to the pipeline described in Section 4 using all
available speech data (M1 and M2 training sets) for the acoustic model and the transcriptions
of the very same data for the language model. For evaluation, we used the M1 test set as
motivated in Section 2. Table 2 shows the results of this experiment and compares them to the
human baseline performance established in Section 3. The achieved performance of our speech



Errors Tokens WER

ASR 1 850 10 115 18.3%

Human Baseline 1 760 10 115 17.4%

Table 2. Comparing Human and ASR Performance

Errors Tokens WER

4 413 28 696 15.4%

Table 3. ASR Performance in a Realistic Clinical Use Case

recognizer in this task was 18.3% WER which is less than one percentage point higher than
the human baseline. To test whether this performance difference is of statistical significance,
we carried out a two-proportion z-test. The resulting p-value is 0.10 which suggests that the
difference observed in this experiment was not statistically significant at the p < 0.05 level,
despite the rather large test set comprising over ten thousand tokens. While increasing the
size of the test set will eventually reveal which of the two, human or machine, outperforms
the other, this experiment shows that the accuracy of the speech recognizer we constructed is
only marginally different from that of a professional medical transcriptionist, and is, hence,
reaching parity.

5.2 ASR Performance in a Realistic Clinical Use Case

For the second experiment, we used the same acoustic model as before, trained on the M1
and M2 training sets, i.e. a total of 271 hours of speech. In order to prepare for a deployment
in a realistic clinical use case, we substantially increased the size of the language model
training corpus by including another 30 million tokens of medical reports (the training set
of M30). This time, the experiment was carried out on the M2 test set which matches the
target distribution in a realistic clinical setting. The results are shown in Table 3. The error
rate, 15.4% is statistically significantly lower than that reported in the first experiment and
establishes a strong baseline performance for a realistic clinical use case.

6 Conclusion and Future Directions

We have shown that a carefully tuned state-of-the-art speech recognizer, whose acoustic and
language models were trained on moderate size speech and language corpora covering speech
and relevant report samples of a set of over 270 physicians, is able to perform on a par with
professional human medical transcribers. The human performance was measured in a single
pass scenario, i.e., with no additional quality assurance or automated assistance (apart from
a spell checker). Following previous work on measuring and optimizing human performance,
e.g., in multi-pass or quality control scenarios, indicates that the human word error rate
can be further improved. However, as it stands, the presented speech recognizer could be
capable of serving as an automated first-pass transcriptionist. Furthermore, the authors are
currently working on a number of enhancements to the speech recognizer which should result
in substantial further improvements to the error rate, including

– optimizing the feature extraction configuration—the graph in Figure 2 shows our feature
extraction pipeline and the diverse algorithms which we can choose from



– optimizing speaker clustering—we have seen significant performance gains by splitting
speakers into specific speaker groups by certain criteria (e.g. region, gender, native lan-
guage); our goal is to find the optimal split to optimize overall word error rate

– unsupervised acoustic model adaptation—making use of tens of thousands of hours un-
transcribed speech

– enhancing the language model by a) adding substantially more data (several million
episodes), b) using sophisticated interpolation techniques, and c) rescoring with RNN-
based, skip, or class language models.
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18. Alumäe, T.: Full-duplex speech-to-text system for estonian. In: Proc Baltic HLT, Kaunas,
Lithuania, IOS Press (2014) 3–10

19. du Toit, J., Hattingh, R., Pitcher, R.: The accuracy of radiology speech recognition reports in a
multilingual south african teaching hospital. BMC Med Imaging 15(8) (2015) 1–

20. Strahan, R., Schneider-Kolsky, M.: Voice recognition versus transcriptionist: error rates and
productivity in mri reporting. J Med Imaging Radiat Oncol 54(5) (2010) 411–414

21. Zick, R., Olsen, J.: Voice recognition software versus a traditional transcription service for
physician charting in the ed. Am J Emerg Med 19(4) (2001) 295–298

22. DuToit, J., Hattingh, R., Pitcher, R.: The accuracy of radiology speech recognition reports in a
multilingual South African teaching hospital. BMC Medical Imaging 15(8) (2015)

23. Basma, S., Lord, B., Jacks, L., Rizk, M., Scaranelo, A.: Error rates in breast imaging reports:
comparison of automatic speech recognition and dictation transcription. AJR Am J Roentgenol
197(4) (2011) 923–927

24. Suendermann-Oeft, D., Ghaffarzadegan, S., Edwards, E., Salloum, W., Miller, M.: A system for
automated extraction of clinical standard codes in spoken medical reports. In: Proc Wrkshp SLT,
San Diego, CA, IEEE (2016)

25. Zechner, K.: What did they actually say? agreement and disagreement among transcribers
of non-native spontaneous speech responses in an english proficiency test. In: Proc SLaTE,
Warwickshire, UK, ISCA (2009) 25–28

26. Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D., Zweig, G.: Achieving
human parity in conversational speech recognition. arXiv 1610(05256) (2017) 1–13

27. Saon, G., Kurata, G., Sercu, T., Audhkhasi, K., Thomas, S., Dimitriadis, D., Cui, X., Ramab-
hadran, B., Picheny, M., Lim, L.L., Roomi, B., Hall, P.: English conversational telephone speech
recognition by humans and machines. arXiv 1703(02136) (2017) 1–7

28. Suendermann, D., Pieraccini, R.: Crowdsourcing for industrial spoken dialog systems. In
Eskénazi, M., Levow, G.A., Meng, H., Parent, G., Suendermann, D., eds.: Crowdsourcing for
speech processing. J. Wiley, Chichester (2013) 280–302

29. Salloum, W., Edwards, E., Ghaffarzadegan, S., Suendermann-Oeft, D., Miller, M.: Crowdsourced
continuous improvement of medical speech recognition. In: Proc AAAI Wrkshp Crowdsourcing,
San Francisco, CA, AAAI (2017)

30. Glass, J., Hazen, T., Hetherington, I.: Real-time telephone-based speech recognition in the jupiter
domain. In: Proc ICASSP. Volume 1., IEEE (1999) 61–64

31. Mohri, M., Pereira, F., Riley, M.: Weighted finite-state transducers in speech recognition. Comput
Speech Lang 16(1) (2002) 69–88

32. Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvêa, E., Wolf, P., Woelfel, J.: Sphinx-4:
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