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Abstract. A top-down approach to speaker diarization is developed us-
ing a modified Baum-Welch algorithm. The HMM states combine pho-
nemes according to structural positions under syllabic phonological the-
ory. By nature of the structural phonology, there are at most 16 states,
and the transition matrix is sparse, allowing efficient decoding to struc-
tural phones. This addresses the issue of phoneme specificity in speaker
diarization – that speaker similarities/differences are confounded by pho-
netic similarities/differences. We address this here without the expensive
use of a complete set of individual phonemes. The voice activity detection
(VAD) issue is likewise addressed, giving a new approach to VAD.
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1 Introduction

When attempting the “who spoke when” question, i.e. speaker diarization, one
must use features that distinguish different speakers of the dialog. These distinc-
tions are confounded by phonemic differences, which are ultimately irrelevant to
the labeling of speaker turns. This is the opposite of the situation in automatic
speech recognition (ASR), where phone identities must be labeled, and speaker
differences ignored. The problem in ASR is that of “speaker adaptation”, whereas
the problem in speaker diarization is sometimes referred to as “phoneme speci-
ficity” or “phone adaptive training”. We present here a novel speaker diarization
system that addresses the problem of phoneme specificity, while remaining highly
computationally efficient.

The earliest approaches to diarization used a “bottom-up” approach of ag-
glomerative clustering of feature vectors of different frames [14]. These are also
called “unsupervised” in the sense that they require no labeled training data
[35]. These approaches have remained heavily used in the literature [3,2]. Later
systems began to introduce “top-down” approaches in combination with the
bottom-up methods [37,40,12], but these require labeled training data. In fact,
the first such paper [37] was also the first to introduce synthetic dialog data for
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training purposes. Another early top-down approach [40] was the first to use
HMM models with Baum-Welch training (although not as here, where we use
it at diarization time). We first tried the bottom-up approach, where we found
the issue of phoneme specificity to be strongly confounding. That is, for exam-
ple, two fricatives from different speakers can be highly similar in their acoustic
features, while a fricative and a vowel from the same speaker can be highly
dissimilar. A number of papers have now addressed the problem of phoneme
specificity/adaption in speaker diarization [18,5,39,43,4,31,36,42]. This issue is
also well known in the larger literature on speaker recognition and verification
[8,17]. We therefore abandoned the bottom-up approach in favor of the top-down
approach presented here. This required a reliable set of training data, wherein
both speaker labels and phone labels are available (since we desire to study
phoneme specificity). Therefore, we also introduced our own synthetic corpus
(Section 2, and described fully in the companion paper).

Our motivating application is the segmentation of doctor-patient dialogs,
where the diarization is followed by ASR and information extraction [9]. There-
fore, several of our basic decisions were guided by this application. First, the
ASR stage requires MFCC features [7], so we attempt speaker diarization with
the same MFCC features, but supplemented with a small number of auxiliary
features. Second, we focus on the case of 2-speaker dialogs, which covers the great
majority of doctor-patient encounters (although our approach is easily general-
izable to 3+ speakers). Third, the issue of overlapped speech is less problematic
in doctor-patient dialogs, because it is a situation where both members of the
dialog have a high motivation to listen and to respect speaker turn taking. Other
than yes/no responses, most medically critical information is delivered in longer
turns with little or no overlap. Therefore, for our first system presented here, the
focus is entirely on correct labeling of speaker identity, but not necessarily on re-
fining the exact edges of speaker turns. In our system, each speaker-turn segment
is submitted to the ASR stage with some leading/trailing audio anyway, so we
have adopted the most typical “collar” used in diarization publications, which is
250 ms. The “collar” is a region around the segment boundaries that is ignored
for computing the diarization error rate (DER) [1]. Finally, our system must op-
erate in real-time, so there is a strong focus here on remaining computationally
efficient at the time of diarization.

2 Synthetic diarization corpus

Doctor-patient dialogs are not freely available for diarization research. Existing
data sets for diarization contain many speakers (e.g. meetings with 4 to 10+
speakers); or seem particular to a given situation or audio channel; or have
speaker turns labeled, but not phonemic segmentations; or lack a large quantity
of training data in addition to test sets; or cannot be obtained freely for general
use. Therefore, we have developed a synthetic corpus as a basic starting point
for diarization research, utilizing the open-source LibriSpeech corpus [27]. This
synthetic corpus (Table 1) is described fully in the companion paper.
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Table 1. Corpus of synthetic LibriSpeech dialogs

Dialogs Utts (Turns) Tokens Hours

Train 292 28522 989715 98.15

Dev-clean 48 2673 53765 4.98

Dev-other 45 2822 50227 4.69

Test-clean 43 2605 52279 5.07

Test-other 45 2861 51305 4.85

3 New lexicon with syllabic phonology

The concept of the syllable has a long tradition in linguistics, dating at least
to the ancient Greek συλλαβη and Latin syllaba [38,25,16]. Use of the syllable
in ASR dates to one of the earliest systems [26], and has recurred many times
since [20,11]. However, syllabic approaches have consistently remained outside of
the mainstream of ASR, and have been used only very rarely in speaker recog-
nition [23,34,24]. We know of no syllable-based work in the speaker diarization
or VAD literatures. One contributing factor may be the absence of a lexicon
from which syllabic segmentations can be obtained directly. There is no simple
method for obtaining syllabifications from ARPAbet-based lexicons [33], such as
the widely-used CMUdict [28]. We have therefore developed an English lexicon
utilizing syllabic phonology. For present purposes, this essentially means that
each phoneme is assigned a structural position (i.e. Affix, Onset, Peak, Coda,
Suffix), according to the most widely-accepted phonological theory [32,10,19,15].

The immediate practical motivation for introducing syllabic positions into
our diarization work is that we would like to address phoneme specificity with-
out however introducing a full phoneme-based decoding (as in ASR), which
would be computationally expensive. On the other hand, there are only a hand-
ful of syllabic structural positions (5-15, depending on how many sub-positions
are used), and the transition matrix for the structural positions is sparse. Thus,
in the above 5-position scheme, Affix can only precede Onset; Onset can only
precede Peak; Coda can only follow Peak; and Suffix can only follow Coda. An
English utterance is a rather predictable succession of structural positions, and a
dialog simply allows these to transition between speakers. Since the vowel phones
occur exclusively in the Peak position, and since vowel segments are the domi-
nant source of speaker characteristics, the Peak segments can be primarily used
to distinguish speakers. This is the original idea and motivation; the resulting
system in practice is given next.

4 Diarization method

Our speaker diarization system proceeds in two general stages: 1) Feature extrac-
tion and decorrelation/dimensionality reduction; 2) an expectation maximization
(EM) algorithm to obtain posterior probabilities of HMM states, from which the
speech/silence and speaker labels are obtained. All coding was done in C.



4 E. Edwards et al.

4.1 Feature extraction

Our total system cascades an ASR stage following diarization, so, for efficiency,
we begin with the ASR acoustic features (40-D MFCCs [7]), supplemented with
a small number of auxiliary features. Specifically, we append the 4-D Kaldi pitch
features [13] and the 5-D VAD features of [29]. These are supplemented with ∆
features, making a total 98-D feature set. This is reduced by PCA (principal
component analysis) to 32-D output, followed by multi-class LDA (linear dis-
criminant analysis) [41]. LDA was trained on labels defined by the 7 syllabic
phone categories below, with vowels differentiated by the 251 unique speakers,
giving 258 LDA labels total (1 silence, 6 consonant, and 251 vowel labels). All
results presented here use a reduced set of 12-D LDA components. Finally, we
change the 12-D LDA features to percentile units, where 128 bins were learned
for each LDA feature from the training data. This allows the features to be held
as char variables (the smallest data type in C), and used for direct table look-
up, leading to greater computational efficiency at the time of diarization. Also,
since the features are decorrelated by PCA/LDA, this allows the use of a direct
(binned) probability representation, whereas GMM probability representations
were found to perform worse and take > 2× longer computationally.

4.2 Modified Baum-Welch algorithm and HMM states

The Baum-Welch algorithm is a method to iteratively estimate the parameters
of an HMM model [21]. As such, it is usually applied during training, and the
resulting parameters fixed at decoding time. However, here we adapt the Baum-
Welch algorithm to perform diarization on test data. The training data is only
used to initialize the HMM parameters, and then the modified Baum-Welch
algorithm adapts to the audio file under consideration by EM iterations. The
update equations of the Baum-Welch are well-known and not covered here. More
importantly, we have arrived at a method of progressive untying of HMM states
with successive stages of iterations, such that stage 1 essentially provides a soft
VAD output, and the last stage achieves the full diarization.

A recorded 2-person dialog consists of an initial segment of silence, alternat-
ing utterances of speakers 1 and 2 (with silent gaps within and between), and
then a final segment of silence. The first person to speak is labeled “speaker 1”
by definition, and “silence” includes any irrelevant background noise and often
breath sounds. Note that initial silence is special in terms of the HMM A matrix,
because the dialog must begin in this state, and this state must transition to
speaker 1. However, we found no advantage to keep the final silence as a sepa-
rate state, nor to keep within- vs. between-speaker silences separate. Thus, our
HMM model has 4 overall states: 1) Speaker 1; 2) Speaker 2; 3) Initial silence;
4) Other silence. For the B matrix (emission probabilities), all silences remain
tied together in one “tie-group”.

Next, we split the Speaker 1 and 2 states according to syllabic phonology, in
order to address phoneme specificity (see Introduction). The following split into
7 phoneme categories was found so far to perform best:
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1. Prevocalic stops (B, D, G, K, P, T)
2. Prevocalic fricatives/affricates (CH, DH, F, HH, JH, S, SH, TH, V, Z, ZH)
3. Prevocalic liquids/nasals/semi-vowels (L, N, M, NG, R, W, Y)
4. Vowels (AA, AE, AH, ..., UW) (inclusive of all stress levels)
5. Postvocalic liquids/nasals/semi-vowels (L, N, M, NG, R, W, Y)
6. Postvocalic stops (B, D, G, K, P, T)
7. Postvocalic fricatives/affricates (CH, DH, F, HH, ..., Z, ZH).

This breakdown uses the most important phonemic distinction according to
syllabic positions, which is the pre- vs. postvocalic distinction. This refers to con-
sonants which lie before vs. after the vowel within the syllable. This distinction
was emphasized already by Saussure (his“explosive” vs. “implosive” consonants)
[30], and by the early Haskins studies of speech (their “initial” vs. “final” conso-
nants) [6,22]. In terms of syllabic phonology, prevocalic merges Affix and Onset
positions, postvocalic merges Coda and Suffix positions, and vowel is the same as
Peak position. The pre- vs. postvocalic split was found to improve performance
already at the VAD stage, whereas fewer distinctions (4 phone categories) and
more refined distinctions (up to 15 phone categories) deteriorated performance.
Thus, we proceed with the 7 structural-phone categories.

These phone categories define 7 HMM states per speaker, now giving 16
HMM states total (2 silence states + 7 states per speaker). Finally, we use the
traditional 3 left-to-right substates per basic state, giving a grand total of N = 48
HMM states. Note that the major purpose of the 3 substates is to provide more
realistic durational modeling by the transition matrix (A). For concreteness, we
list these HMM states explicitly:

– HMM States 0-2: Initial silence
– HMM States 3-5: Other silence
– HMM States 6-8: Speaker 1, prevocalic stops
– HMM States 9-11: Speaker 1, prevocalic fricatives/affricates
– HMM States 12-14: Speaker 1, prevocalic liquids/nasals/semivowels
– HMM States 15-17: Speaker 1, vowels
– HMM States 18-20: Speaker 1, postvocalic liquids/nasals/semivowels
– HMM States 21-23: Speaker 1, postvocalic stops
– HMM States 24-26: Speaker 1, postvocalic fricatives/affricates
– HMM States 27-29: Speaker 2, prevocalic stops
– HMM States 30-32: Speaker 2, prevocalic fricatives/affricates
– HMM States 33-35: Speaker 2, prevocalic liquids/nasals/semivowels
– HMM States 36-38: Speaker 2, vowels
– HMM States 39-41: Speaker 2, postvocalic liquids/nasals/semivowels
– HMM States 42-44: Speaker 2, postvocalic stops
– HMM States 45-47: Speaker 2, postvocalic fricatives/affricates

The HMM A matrix, representing transition probabilities between these
states, is learned once from the training data. Importantly, we do not update
the A matrix during the modified Baum-Welch iterations. This is the most time-
consuming update computation, and has negligible consequences for diarization.
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Moreover, it was found that it was better to sparsify the A matrix by setting
direct (0-ms lag) Speaker 1 to 2 transitions to 0.

The HMM B matrices, representing emission probabilities for each state, are
first learned from the training data, and then updated with each iteration of the
Baum-Welch during diarization. However, it is common practice to tie HMM
states so that their emission probabilities are estimated jointly. This is partic-
ularly important if there is too little data. Moreover, most diarization systems
begin with a VAD stage (speech vs. silence), before making the more refined dis-
tinctions for diarization. An important result of our preliminary investigations
was that the B matrices are best updated with strong ties across states initially,
and then progressive untying of the states towards the final diarization. We ar-
rived at a 3-stage procedure, wherein the first stage uses only 7 tie groups, the
last stage leaves most states untied, and the middle stage uses an intermediate
degree of tying. Specifically, using the 48 HMM states enumerated above, the
following 3-stages of state tie groups was found to work best:

STAGE 1 TYING OF B MATRIX:

– TIE-GROUP 0 == HMM States 0-5 (Silence)
– TIE-GROUP 1 == HMM States 6-8, 27-29 (Prevocalic stops)
– TIE-GROUP 2 == HMM States 9-11, 30-32 (Prevocalic fricatives)
– TIE-GROUP 3 == HMM States 12-14, 33-35 (Prevocalic liquids/nasals)
– TIE-GROUP 4 == HMM States 15-17, 36-38 (Vowels)
– TIE-GROUP 5 == HMM States 18-19, 39-41 (Postvocalic liquids/nasals)
– TIE-GROUP 6 == HMM States 20-22, 42-44 (Postvocalic stops)
– TIE-GROUP 7 == HMM States 23-25, 45-47 (Postvocalic fricatives)

It can be seen that no distinction is made in Stage 1 between speakers. This
is therefore a speech vs. silence stage, except that speech has been expanded
into the 7 structural-phone categories. This is, in fact, a new method of VAD,
with soft (posterior probability) outputs. These are then used to initialize Stage
2 of the Baum-Welch iterations, where only the vowels are used to begin the
separation of speakers. Thus, TIE-GROUP 4 of Stage 1 is split into 2 tie-groups
in Stage 2.

STAGE 2 TYING OF B MATRIX:

– TIE-GROUP 0 == HMM States 0-5 (Silence)
– TIE-GROUP 1 == HMM States 6-8, 27-29 (Prevocalic stops)
– TIE-GROUP 2 == HMM States 9-11, 30-32 (Prevocalic fricatives)
– TIE-GROUP 3 == HMM States 12-14, 33-35 (Prevocalic liquids/nasals)
– TIE-GROUP 4 == HMM States 15-17 (Speaker 1 Vowels)
– TIE-GROUP 5 == HMM States 36-38 (Speaker 2 Vowels)
– TIE-GROUP 6 == HMM States 18-19, 39-41 (Postvocalic liquids/nasals)
– TIE-GROUP 7 == HMM States 20-22, 42-44 (Postvocalic stops)
– TIE-GROUP 8 == HMM States 23-25, 45-47 (Postvocalic fricatives)
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It should be kept in mind that speaker distinctions are most usefully ob-
tained from vowels. A major purpose of the consonant categories is just to sep-
arate them out from the vowels, so as not to contaminate the acoustic evidence
provided during vowels states. Consonants also provide some degree of power
to distinguish speakers, but we leave these states tied across speakers until the
final iterations, in order not to interfere. Experiments showed that all 3 of these
stages (and in this order of course-to-refined) were necessary to achieve the best
performance. 8 EM iterations per stage were used for all results here.

Following the 24 EM iterations of the 3-stage Baum-Welch algorithm, the
posterior probabilities are summed across all Speaker 1 states, all Speaker 2
states, and all Silence states. By this method, it is not important if the algo-
rithm has perfectly separated various consonant categories, because they are all
summed together with the vowel states for each Speaker. The final diarization
label is taken as the maximum of these three probabilities for each time frame.

5 Results and Discussion

We present results for the synthetic LibriSpeech dialog corpus (Section 2), and
for 2 recordings of doctor-actor dialogs. In the latter, a real doctor interviewed an
actor patient (to avoid privacy issues). The doctors were male, and the patients
female. Audio was recorded by a cell phone. The 2 dialogs were 6.4 min and 5.7
min in duration, and used for test data only. All training to initialize the HMM
A and B matrices was done on the synthetic corpus.

For the synthetic LibriSpeech corpus, we obtain the following DERs, using
a collar of 250 ms, as assessed with the widely-used md-eval-v21.pl script (from
NIST). The same collar and script was used to asses the VAD error rate (VER).

Table 2. Results for synthetic LibriSpeech dialogs

Mean DER Max DER Mean VER Max VER

Dev-clean 0.66% 2.44% 0.62% 2.38%

Dev-other 0.94% 3.75% 0.90% 3.75%

Test-clean 0.95% 4.45% 0.78% 4.44%

Test-other 1.18% 5.58% 1.12% 5.42%

It can be seen that, using the liberal collar of 250 ms, the algorithm can
successfully detect speech (VAD) and then diarize all of the development and
test files. It must be emphasized that this is by no means a guaranteed result, and
previous versions of our diarization methods obtained mean DERs closer to 5-
10%, or worse (i.e., early bottom-up method). Also, the present algorithm under
different settings would often fail on a small subset of files, e.g. obtain max
DERs worse than 20-30%. The influential settings are: inclusion of VAD and
pitch features; number of LDA components; types of phonological distinctions;
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type of probability model for B matrices (e.g. GMMs performed worse); and,
critically, the tying and progressive untying of HMM states during successive
stages of the EM iterations.

Interestingly, the majority of the observed DER is due to VER (VAD error).
Thus, the grand-mean DER was 0.93%, and the grand-mean VER was 0.85%,
and it was common (under the liberal collar of 250 ms) to observe files with
the same DER as VER, meaning that the algorithm rarely struggles to separate
speaker characteristics, if the stage-1 (soft VAD) outputs are accurate. In fact,
some of the VAD errors obtained may be considered spurious, as breath noise is
not consistently treated in the forced alignments. The results imply that future
improvements should first focus on the Stage 1 VAD phase.

For the live doctor-actor dialog recordings, we obtain:

Table 3. Results for recorded doctor-actor dialogs

DER VER

Dialog 1 4.06% 3.26%

Dialog 2 10.00% 9.13%

Average 7.20% 6.37%

Thus, a reasonable diarization of the real-world recordings was still obtained,
despite the fact that the HMM model was trained only on synthetic data with
no overlap. The LibriSpeech corpus is primarily American speech, wheras the
doctor-actor dialogs here were British speech; and the recording method (cell
phone) was quite different than for the training corpus. Also, the real-world
dialogs contain many segments of coughing and other non-speech sounds that
are not present in the training data, as well as many hesitation sounds (“umm”,
“ahh”). Finally, the manual diarization of these dialogs is likely not perfect.
Therefore, the average DER of 7.2% is encouraging for the applicability of the
general methods reported here, although we will clearly need to obtain matched
training data for the methods to fully work.

6 Summary and Conclusion

We have presented our initial speaker diarization system, with the intended ap-
plication of doctor-patient dialogs. Training on a synthetic corpus, to initialize
HMM parameters, allowed successful diarization of recorded doctor-patient di-
alogs. The HMM parameters are updated in 3 stages of EM iterations, at the
time of diarization. Emphasis was on computational efficiency, leading to a re-
duced Baum-Welch algorithm that omits A-matrix updates, and uses discrete
(binned) probability distributions. HMM states are based on only 7 structural
phones, as motivated by syllabic phonological theory, with sparse transition ma-
trix, allowing an efficient approach to the phoneme specificity problem. The first
of the 3 EM stages replaces the usual VAD stage, also improving total efficiency.
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