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1 Overview 

The main objective of this work package is to produce synthetic speech with improved quality and 
added functionalities for speech-to-speech translation. Speech-to-speech translation is a scenario 
that makes speech synthesis harder because TTS systems are designed for grammatical and 
“correct” inputs. In speech to speech translation the input is not well formed because it comes from 
transcription of speech, not text. Furthermore, speech recognition and spoken translation engines 
make errors. As a consequence, the input is far from being grammatically correct, which is the 
situation where most of the systems, are trained. On the other hand, the speech-to-speech 
translation framework offers a valuable source of information: the original voice. The voice 
characteristic is an information source which may allow generating richer prosody being able to 
transmit not only linguistic but paralinguistic information (as the attitude of the speaker) which is 
crucial for successful communication. Furthermore, in TC-STAR we want to analyse information 
in the source voice for transforming the synthetic voice so that it sounds like the original speaker, 
creating a new functionality that allows voice customization of speech synthesis. This capability 
may turn crucial when several people use the translation system as is the case of meetings or 
parliamentary debates.  

Coordination 

To coordinate the work in the work package, several meetings have been arranged. In the general 
meetings of the project (May in Trento and November in Barcelona) parallel meetings have been 
allocated. Furthermore three specific meetings for the work package have been organized: Maribor, 
July 2004; Barcelona, December 2004; Dresden, Mars 2005. A distribution list has been set up 
from the beginning of the project (wp3@tc-star.org) and a web site (internal part of www.tc-
star.org) . Several conference calls have been arranged with participants of the participants on the 
workpackage. 

Mobility 

For exchanging know how in the field of voice conversion and manipulation of speech segments, 
the PHD-Student David Sündermann stayed for several months on the sides:  UPC;  Siemens and 
RWTH. The success of the close cooperation can be seen on the common papers made by 
researchers from those sides (see references, chapter 7).  

Subcontracting 

For performing some of the task involved in language resources (WP4) Siemens and UPC plan to 
subcontract external subcontractors. 

• Siemens: Recording for synthesis voices, creation of the corpus ‘frequent used 
sentences’, pitch annotation, lexicon 

• UPC: labeling of speech data 

Collaboration with other organizations 

The partners have founded an external consortium (European Center of Excellence for Speech 
Synthesis – ECCES- : www.ecess.org), open to any research group, and with more than 10 research 
groups involved. The goal of this consortium is to increase the critical mass in speech synthesis. 
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The consortium has agreed to define a modular system with clearly defined interfaces. In this way, 
modules from one system can interact with modules from other system to build the best final 
system. This allows to institutions with small critical mass to focus in their specific research topic 
and participate in evaluation campaigns without the overhead of develop and maintain a complete 
state-of-the-art system. This consortium has actively participated in the discussions about the 
specifications on language resources, evaluation and architecture design. In fact, all the partners 
plan to participate in evaluation campaigns organised by TC-STAR and some partners plan to 
produce databases in their national language using the specifications from TC-STAR.  

Review of the tasks in the Work package and structure of the document 

The first task of the workpackage “Specification on language resources and evaluation” has been 
completed.  

The specifications on Language resources define all the steps needed to produce high quality data 
for generating high quality synthetic voices (in the framework of unit selection) including corpus 
design, speaker selection, recording platform, speech annotation, lexicon and the procedure to 
validate the produced resources. The first part of the specifications aims to create baseline voices. 
The second part address specific research activities of the project: voice conversion and expressive 
speech. Section 2 of this document summarizes the specifications and also the progress done in 
producing the language resources. The full version of the specifications can be found in deliverable 
D8. 

With respect to the specifications to evaluate speech synthesis, several tests have been defined to 
evaluate the speech synthesis component (black box), the speech synthesis modules (glass box) and 
two specific research activities: voice conversion and expressive speech. Section 3 goes over the 
main points of the evaluation specifications. Deliverable D8 also includes the complete 
specifications.  

Section 4 reviews the work on the second task of the work package: baseline systems for research 
and evaluation. The TTS system has been divided into three functional modules, text processing, 
prosody generation and acoustic synthesis. The interfaces (input/output) have been formally 
defined. This allows to evaluate each module separately (diagnosis) and to compose modules from 
different partners to get the best result or to combine functionalities. With respect to development 
of the systems, each partner has advanced on their own system in order to have TTS in the three 
languages of the project (English, Mandarin and Spanish). In state of the art concatenative systems 
using unit selection, the performance of the system depends on the speech voice: the baseline 
systems will be operative and evaluated once the language resources are finished (already started). 

The workpackage devotes special effort to two research activities. Section 5 and 6 are devoted to 
the progress on these activities. In particular section 5 deals with the task Voice conversion, 
manipulation and compression. The partners have investigated in the speech representation and the 
conversion of the parameters. The final goal in TC-STAR is to achieve cross-language voice 
conversion so that the output synthetic speech sounds like the original natural speech. However, in 
this first year all the voice conversion activity has been focused in intra-lingual voice conversion. 
Nevertheless, some effort has been devoted to text-independent voice conversion. Here, the 
training date required to estimate the conversion function does not need to correspond to the same 
text. This can be seen as a first step towards cross-lingual voice conversion. The baseline 
algorithms are been set up for the three partners. In general the systems successfully transform the 
identity of the source speaker into the target one. However, the quality of the voice is degraded 
significantly with respect to natural speech. Alternatively, some research has been done that gets 
good quality but the voice of the transformed speech resembles a third speaker. Additional work 
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has to be done to accomplish both goals, quality and identity change, using the same technique. 
Section 5 review the contribution in several aspects as transformation of LSF parameters, 
transformation or prediction of the target residual signal, voice conversion using vocal tract 
normalization (VTN). Also some promising results have been obtained in compression. The goal is 
to produce low footprint systems which can be used in embedded systems. The work is based on 
selection of speech units and coding using adaptive multirate. Analysis algorithms have been 
developed to represent speech  using the glottal-filter approach and the deterministic + stochastic 
model. It is expected that this representations allow better manipulation with respect to prosodic 
changes, concatenation and voice conversion. 

Section 6 is devoted to the last task of the workpackage, prosody modelling an expressive speech. 
The information of speech voice is not limited to pure linguistic but includes other information as 
the attitude of the speaker towards the message or towards the audience, the feelings of the speaker, 
etc. It is difficult to get this information from the text: first the semantic and pragmatic analysis is 
still far from been a mature science. Even more: in many cases this information is not present in the 
text. Transcriptions of speeches can indeed be misunderstood because this information is not coded 
in the text. In order to improve the expressivity of the synthetic speech we have defined a 
framework to include information from the source speech. The idea is that some acoustic features 
in the source speech can be used to derive acoustic features in the target speech (in different 
language). To implement this idea it is required to analyse the source speech, to map the 
information from source speech to target text and to generate the prosody. During the first year 
most of the work has been devoted to prosody generation. A new paradigm has been proposed to 
that achieves better results. The idea is to integrate the analysis of the contours (feature extraction) 
and the generation of the model. The basic idea is to define first classes (model) and to find the best 
analysis for all the members of the class (feature extraction). This implies that the feature extraction 
is done simultaneously for the entire corpus and not sentence by sentence. This paradigm avoids 
the use of stylization and voiceless interpolation which sometimes are hand tuned and influence 
significantly on the final models. Furthermore the results are more robust to errors either in the 
estimation or in the linguistic features. This paradigm has been applied to several intonation models 
(Tilt, Fujisaki, Sup-Bezier). The investigated methods improve the synthetic speech in general 
(using text as input). Additionally, it is possible to extend them including additional features 
derived from the input speech. Furthermore, some work has been done to analyse the input speech 
and detect features as prominence, speech rate, and f0_contour, including coding the f0_contour 
using a discrete and limited alphabet. 

Dissemination 

The work that has been done in the work package has been disseminated to the scientific 
community. The partners have already published the main results of the work in scientific 
conferences (see references) and in workshops. Furthermore, the results have been communicated 
to members of ECESS and to members of the NoE Similar. This two consortiums include many 
laboratories in Europe and some from outside Europe.  

Main Achievements 

To end this overview, the following list summarizes the main achievements accomplished during 
the first year of TC-STAR in the work package Speech Synthesis: 

• Infrastructure 

• Specifications of LR finished 
• Evaluation procedures finished 
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• Functionalities and Interfaces between modules finished 
• Starting of production of LR 

• Research on Baseline, English, Mandarin and Spanish, using existing LR  

• Modules structure compatible with defined interfaces 
• Algorithms for text processing, prosody and acoustic synthesis 

• Research on voice conversion, compression and manipulation with existing LR 

• First steps towards cross lingual voice conversion: Text independent approach 
• Improving voice quality by residual prediction for voice conversion 
• Improvement to map speaker’s voice characteristics: Integration of phonetic 

information 
• Footprint reduction and quality improvement: Integrated approach on speech coding 

and manipulation 
• Exploring new models on speech production for voice conversion. 

• Research on prosody modelling and expressive speech 

• Preserve naturalness in prosody for tonal languages: eigen pitch approach 
• Definition of a novel joint feature extraction and modelling approach (JEMA) 
• Improve prosody generation by an application of (JEMA) to three existing models 

2 Specification of Language resources 

All WP3 partners (Nokia, Siemens, SPEX, UPC) contributed on the specification of the language 
resources. This work was coordinated and drafted by Siemens. 

This chapter contains also the information about the work done for the production of LR needed for 
speech synthesis. This concerns tools needed to produce the LR and the status of production. 

2.1 Specification of Language Resources for Speech Synthesis 

Language resources are needed to build speech synthesis systems and to make research in speech 
synthesis. The basic set of language resources needed in synthesis is 

- lexica containing  entries for pronunciations with stress marks and POS tags 
- voices defined by recorded and annotated speech 
- tagged corpora  

Within TC-STAR language resources for advanced, high quality speech synthesis systems and for 
making research in voice conversion and in expressive speech have to be provided for the 
languages UK-English, Spanish and Mandarin. 
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All these language resources have to be specified and produced if not available. Concerning lexica 
it was decided to use the specification of LC-STAR1 and to use the existing lexica as far as suitable. 
The specification and production of voices is done within TC-STAR. The new specifications are 
part of the deliverable D8. For tagged corpora existing languages resources are used. 

In the following section 2.2 a short overview of the content of specification of voices as 
documented in D8 is given. The TC-STAR partners decided to make a new specification of 
language resources for voices, which is suited for the tasks to be done. Main reasons to make a new 
specification were: 

 Lack of precision (e.g. no requirements for recording equipment, no specification of pitch 
marking) 

 Lack of completeness (e.g. missing specification of LR for voice conversion) 
 Lack of validation criteria (minimal requirements) to assure quality 

 Due to the experience made in the EU-funded SpeechDat2 projects to specify language resources 
for ASR it was clear, that the generation of such specification would be a hard and time consuming 
task. The specifications delivered should have a quality with the potential for becoming a quasi 
standard on which LRs in a variety of languages can be produced.  

2.2 Deliverable D8; LR specification part 

The part of D8 specifying language resources covers the language independent part (LIP) of the 
specifications of language resources for voices. Language specific issues and language specific 
deviations from the language independent specifications are described by each provider of a 
language resource in a separated document LSP (LSP denotes the Language Specific Part). 

The creation of the TC-STAR voices for TTS systems and research on voice conversion is based on 
read speech. For this issue, text corpora are specified which have to be read by selected speakers. 
For research in expressive speech recorded data (e.g. recordings from the Spanish or European 
parliament) and read data will be used. 

The main chapters of the specifications are:  

- the construction of the text corpora to be read 
- the procedure to select suited speakers 
- the recording platform 
- the annotation of the recordings of the speakers 
- the database interchange format 

In order to make available high quality language resources the specification the language resources 
created will be validated. Specific validation criteria have been developed. 

                                                      

1http://www.lc-star.com/WP2_deliverable_D2_v2.1.doc; for Mandarin and Spanish already 
validated LC-STAR lexica exist. 

2 www.speechdat.org 
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The main issue in synthesizing speech from any domain is to achieve a good coverage on speech 
segments with all their prosodic properties used in a given language. As speech segments, triphones 
or syllables in various prosodic contexts are regarded. Due to the large amount of such units and 
given a restricted corpus, 100% coverage is hardly to achieve. A compromise concerning effort and 
coverage has to be made. For the baseline of the synthesis system it was decided to record 10h of 
speech for each voice. This amount corresponds roughly to 90 000 spoken word tokens to be read 
by a baseline speaker. The text corpus consists on text derived from transcribed speech (45 000 
word tokens) to cover phenomena found in speech, on written text (27 000 word tokens) and on 
specifically constructed text (18 000 word tokens). The last corpus is designed to achieve high 
coverage and for research in intra lingual voice conversion. Part of the text of the transcribed is 
translated in order to achieve parallel corpora needed for cross language voice conversion. 

For the baseline systems for each language one male and one female speaker and for research in 
voice conversion 4 bilingual speakers per language pair (Spanish-UK-English; Mandarin-UK-
English) are selected3. 

The usefulness of the recorded speech depends on the quality of the speech signal and on the 
precision with which the glottal closure can be reliable marked (pitch marking). The recordings 
have to be made in high quality studios with low noise level and low reverberation time. Finally the 
recorded speech has to be annotated. All speech has to be completely phonetically transcribed, 
segmented and pitch marked. 

2.3 Status of production: Text Corpora, related Voices and lexicon 

The status on the text corpora and the related baseline voices is as follows 

 

Partner Language Text 
Corpus 

Lexicon LSP Speaker 
selection 

Recordings 

Nokia Mandarin 50% ready in 
progress 

draft in progress in progress 

Siemens UK-English 50% ready not started draft in progress in progress 

UPC Spanish finished in 
progress 

draft in progress in progress 

Specific work done for designing the text corpora is described in the following sections. 

2.3.1 Nokia 

Foreword 

                                                      

3 Due to the funding situation for Mandarin only 1 voice is created. Within the framework of ECESS a 
second voice will be created. The same holds for voice conversion, where for the language pairs Mandarin-
UK-English only 2 speakers are provided within TC-STAR. 
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Mandarin Chinese text materials face special challenges since the parliamentary speech and 
transcribed text resources are not easily available. Recently Recently (beginning of April) we 
reached an agreement with ChineseLDC about the license of their transcribed broadcasting news 
corpus for Nokia and other partners in TC-STAR and ECESS. However, we haven’t received the 
corpus yet. The coverage figures presented here are mainly for C2_T and C3.3_T. 

Tonal Syllable Coverage in Chinese 

The aim of this section is to do a study on the Mandarin Chinese tonal syllables. The approximately 
38100 Chinese most common words, taken from the LC-STAR project, have been analyzed in 
order to get the necessary tonal syllables to be covered within the whole corpora sentences (90000 
running words), as well as their apparition probabilities. The outcome of this first study is shown in 
Table 2.3: 

 

Different tonal syllables in 
Modern Chinese Lexicon– 

N1 

Different tonal syllables in 
LC-STAR Common Word 

Lexicon – N2 

LC-STAR Common Word  
Lexicon Coverage of tonal 

syllables 
1288 1243 96.5% 

Table 2.3 Tonal Syllable Coverage in Chinese LC-STAR Common Word Lexicon 

The aim of the synthesis corpus will be to always achieve, at least, the 95% of the tonal syllables of 
LC-STAR, that is to say not less than 1181 syllables. 

We have made an analysis for C2_T Novels and C3.3T Mimic sentences. 

Finally, the corpora sizes (in words) that have been used and tried to reach as target are shown in 
Table 2.4 : 

 

 Initial Corpus 
size in sentences 

Initial Corpus size 
in words 

selected corpus in 
words 

Tonal syllables Tonal syllable 
coverage for LC-

STAR 
C2_T   27049 1146 92.3% 

C3.3_T 540465 5642073 3007 1120 90.1% 

Table 2.4 : Initial and Target Corpus sizes 

2.3.2 Siemens 

Coverage experiments in UK-English. 

In order to generate the corpus C_T for UK-English fulfilling the coverage criteria defined in 
[Bon05], we required two kinds of language resources: a UK-English phonetic lexicon and large 
text corpora of the specified domains from which the C_T corpus can be extracted. In the following 
two subsections, we describe the generation of the respective material and its properties. Then, we 
report on the triphone coverage experiments and investigations on the coverage of rare phonemes. 
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The Phonetic Lexicon 

In order to produce a preliminary phonetic lexicon for US-English, we merged the UK-English 
version of the CELEX [Baa93] and the Unisyn [Fit00]; both were provided for research purposes 
only. This was done in the following way: 

• At first, we mapped the lexicons’ phoneme sets to the one that is to be used for TC-Star 
UK-English speech synthesis. 

• After merging the lexicons, a lot of word entries were represented by several transcriptions. 
However, for the coverage experiments, we agreed to use only the most frequent 
transcription of each entry, hence, the others were deleted. 

• To obtain a phonetic lexicon with entries according to the LC-Star paradigm, we applied 
the word list of the LC-Star US-English phonetic lexicon (50,466 words) to the merged 
UK-Lexicon resulting in a sub-lexicon containing 46,489 words. This lexicon is to be used 
as standard phonetic lexicon when performing coverage experiments and generating the 
C_T corpus. 

The Text Databases 

The C_T corpus is to be derived from three domains: parliamentary speeches, novels, and 
frequently used phrases. As the latter are manually generated, we are only able to utilize the first 
two domains, where we are provided sufficient text material for selecting certain sentences 
according to the required coverage. For the parliamentary speeches, we used the UK-English part 
of the EPPS corpus, version 2005-02-24 [Gol05], 30,366,390 running words. As novels, we used 
the collected works of A. C. Doyle, 723,552 running words. 

Experiments on triphone coverage 

At first, we transcribed the whole EPPS corpus by means of a simple lookup into the above 
described standard lexicon; in doing so, we ignored unknown words. Now, we checked how many 
different triphones from the lexicon are contained in certain subsets of the transcribed text. The 
number of running words in the considered subsets were logarithmically varied between 1,000 and 
the maximum possible (the entire EPPS). In Table 1, the results are shown with and without stress. 
In the lexicon, we have 12,689 different triphones (or 20,888, when taking the stress into account). 

Looking at the highest seen triphone coverage (83.3 %), we note that the finally required 90% 
could be achieved by exploiting the triphone coverage corpus C3.2_T selecting (90%-
83.3%)/100%*12,689triphones = 850 triphones not yet covered by the corpus from the lexicon, i.e., 
at the most 850 words. These words have to be contained in the C3.2_T (whose size is about 8000 
words) that has to be generated using very large databases as the internet. 

Besides, it should be mentioned, that, in the future, only non-singleton lexicon triphones are 
considered resulting in an essential relaxation of the coverage problem. 

 

running words of the EPPS different triphones  

(with stress) 

coverage (with stress) 

/ % 
1k 780 (834) 6.2 (4.0) 
10k 2,407 (2,842) 19.0 (13.6) 
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100k 4,538 (5,950) 35.8 (28.5) 
1M 7,247 (10,606) 57.1 (50.8) 
10M 9,634 (14,852) 75.9 (71.1) 
30M 10,572 (16,741) 83.3 (80.2) 

Table 2.2 Triphone coverage for UK-English, with and without stress. 

Experiments on the coverage of rare phonemes 

When generating the corpus C3.3_T, we had to make sure that each phoneme occurred at least 10 
times, cf. [Bon05]. This was to achieve a minimum coverage of rare phonemes. To fulfill this 
criterion, we performed the following steps: 

• From the transcribed EPPS corpus, we selected the paragraphs with 10 to 20 words 
obtaining a subcorpus of 1,360,773 words. 

• Now, we applied a greedy algorithm that, in each iteration, selected that  
sentence whose transcription maximized the ratio between the number of  
the currently rarest phoneme according to the already extracted sentences in the  
instantaneous sentence and the number of words thereof. The algorithm  
iterated until the number of extracted words was 2008. 

The rarest phoneme of the C3.3_T occurs 62 times, so that the coverage criterion is fulfilled. 

 

2.3.3 UPC 

Triphone coverage in Spanish 

The aim of this section is to do a study on the Spanish common triphones and diphones and to have 
a reference list. The approximately 50000 Spanish most common words, taken from the LC-STAR 
project (with a proven coverage on several texts greater that 95%), have been analyzed in order to 
get the necessary triphones to be covered within the whole corpora sentences (90000 running 
words), as well as their apparition probabilities. The outcome of this first study is: Different 
triphones: 7951, Singletons: 965, Triphones (without singletons): 6986 

The aim of the synthesis corpus will be to always achieve, at least, the 95% of the triphones 
(without singletons), that is to say not less than 6637 triphones. 

To prove the suitability of these triphones, a coverage test has been done with 2.735.000 words 
taken from parliament texts. The phonetic transcription has been obtained by using the Saga 
software. The results are: Different triphones: 8759, Singletons: 508, Triphones (without 
singletons): 8251 

The results from the LC-STAR analysis and the parliamentary texts were compared in order to 
know how many triphones were in both lists. There are 6551 triphones that appear in both lists of 
triphones (without singletons). These have text coverage of the 98.79% of the triphones, which 
overcomes the minimum desired percentage of the 95%. On the other hand, 1700 triphones from 
the text did not belong to the common triphones list, and 435 needed triphones to cover did not 
appear in the analyzed text. 
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Prosodic coverage 

Prosodic coverage for Spanish is done based on diphones and their position in a sentence. For this 
purpose we define: 

• Voiced diphones: one phoneme is voiced 
• Unvoiced diphones: Both diphones are unvoiced 
• Position of diphones in sentences: 

– Initial : From the beginning of the sentence till the first stressed diphone (included) 
– Prepausal: From the last stressed diphone till the end of the sentence 
– Middle: from the first and last stressed diphones (not included) 

In order to define a significant diphone set a selection of distinct diphones (stress and unstressed 
with a frequency of occurrence (fd>10-4) in the parliamentary texts was done. 

The final corpus should accomplish to find 2 examples of the following list: Unvoiced no-
prepausal, Unvoiced prepausal, Voiced initial, Voiced middle, and Voiced pre-pausal 

As a result, a text of approximately 1.700.000 words has been analyzed in order to get the reference 
list of diphones needed to cover.  A total amount of 451 diphones (433 voiced and 18 unvoiced) 
has been obtained, which become 2201 diphones when taking into account all possible positions in 
a sentence. 

Selection procedure 

The aim here is to choose several sentences from different text sources in order to cover the desired 
triphones and diphones, including interrogative sentences. Each separate corpus has been mainly 
obtained by using an in-house corpus balancing tool, CorpusCrt. 

C1.1_T corpora : Parallel Transcribed Text 

The procedure to obtain C1.1_T has been simply to apply the corpus balancing tool to the input 
file, (about 2.700.000 words) having previously ordered the sentences inversely from the triphones 
probabilities point of view, so that the phonetically less probable sentences were at the top of the 
input file. This strategy ensures that CorpusCrt will take from the beginning the less frequent 
triphones. 

C1.2_T corpora : General Transcribed Text 

The procedure to obtain C1.2_T has been to divide it (about 8.800.000 words) in 2 subcorpus. The 
first one (C1.2a_T) is aimed to cover as much missing triphones as possible, with some sentences 
that contain question marks. The second one (C1.2b_T) is mainly focused on covering the missing 
diphones on positions with at least 2 apparitions. The first one represents around the 70% of the 
whole C1.2_T and the second one approximately the 30%. 

C2_T corpora : Novels with short sentences 

Finally, the C2_T is obtained similarly than before. First of all, those sentences that do not 
introduce any new triphone or diphone are erased. This makes the initial corpora diminish from 
315.000 to 260.000 words. Then, CorpusCrt is applied. 
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 C3_T corpora : Selected Sentences and frequent phrases 

Those missing triphones and diphones to cover are now covered with selected sentences written on 
purpose. 

Results 

The obtained corpora in number of words and sentences is summed up in Table 2.1 : 

 

 # sentences # words # different triphones 
C1.1_T 213 9419 3768 
C1.2a_T 288 25257 1248 
C1.2b_T 147 10849 253 

C2_T 545 27030 1047 

Table 2.1 : Number of sentences, words and additional triphones for each corpus 

Triphones coverage 

The target number of distinct triphones is 6637. In the C1_T corpora, 5269 triphones have been 
covered (which represent the 75,4% of the target). These triphones cover the selected sentences at a 
98.71%. With the C2_T corpora, 1047 triphones more are covered, having now a total amount of 
6316 (90.41% of the target) . These triphones cover the selected sentences at the 98.49%.  

Interrogatives sentences 

In the C1.2a_T corpus, 66 out of 288 sentence contain question marks, which represent the 21% of 
the sentences. 

Position on diphones 

The target number of diphones in different positions was 2201 and a 67.92% was achieved wirh C1 
and C2 

C3_T corpora 

There were still 706 diphones and 670 triphones missing in the previous corpora that are covered 
with selected phrases. Sentences are manually selected (8000 running words) 

A number of frequent phrases are built in the following domains: Brands, Foreign countries and 
major cities, Spanish provinces and cities in several  prosodic positions, Digits and Cardinals, 
Ordinals with common Spanish proper names (gender is included),  

Spellings, Dates, Questions, WEB, email and URL addresses, and Dialogue corpus. 
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2.4. Tools 

Several tools have been developed. Main cost factor on production is segmentation on phoneme 
level and epoch detection. Several segmentation algorithms were investigated. To study the quality 
of epoch detectors manually marked databases are started to be produced. 

2.4.1 UPC 

Automatic phone segmentation for TTS synthesis. 

When using concatenative TTS synthesis, we need to spend a big part of the effort on preparing the 
database. Parts of this process use to be completely manual or manually supervised. Phone 
segmentation is one of the tasks that require largest effort .  

In our work we have compared three classical methods and a proposed one and evaluated them 
objectively [Ade04]. Then another new method is proposed and together with previous ones they 
were both objective and perceptually evaluated [Ade05]. The results show that the quality of the 
segmentation needs to be evaluated not only using objective evaluations but also subjective ones. 

Baseline methods studied: 

Hidden Markov Models:  It consists on performing a forced alignment by means of the Viterbi 
algorithm. It is assumed that the phonetic transcription is known, Transitions between models are 
then considered as phone boundaries. [Tay91] 

Dynamic Time Warping : This method uses a dynamic time warping algorithm to align 
synthesized voice with a non-segmented one. In TTS the database is labeled so we know where the 
phone boundaries are in the synthesized speech. Then, these boundaries are mapped onto the 
recorded speech by means of the alignment performed. [Kom03]. 

Artificial Neural Networks: They can be used to correct the boundaries given by HMM based 
systems and achieve better performance .ANN try are designed to estimate the probability of 
having a boundary in a specific frame from a set of acoustic characteristics extracted from the 
voice. HMM boundaries are moved to the closest maximum given by the network [Tol 03]. 

Proposed methods: 

Acoustic Clustering-Dynamic Time Warping (AC-DTW): Phonetic boundaries are established 
by a Dynamic Time Warping algorithm that uses the a posteriori probabilities of each phonetic unit 
given an acoustic frame. These a posteriori probabilities are calculated by combining probabilities 
of acoustic classes, which are obtained from a clustering procedure on the acoustic feature space, 
and the conditional probabilities of each acoustic class with respect to each phonetic unit [Góm02]. 

Regression Tree-Boundary Specific Correction (RT-BSC): HMM boundaries are refined using 
phonetic features (i.e. manner, articulation point, voice, etc. . . ) of both phones involved in the 
transition. A small sub-corpus is used to train a Regression Tree that makes a regression of the 
error between the manually supervised and the HMM-based segmentation as a function of the 
phonetic features by means of binary questions. Then, this tree can predict the error for the rest of 
the corpus, thus it can be corrected. 
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A further comparison between ANN and RT-BSC methods pointed out that phonetic features are 
better suited for HMM boundaries refinement than acoustic ones [Ade04]. Our proposed methods 
have overcomed classic methods performance on objective evaluation. However, a perceptual test 
showed that none of the methods improved the overall quality of the system. [Ade05] 

3. Evaluation 

In deliverable D8 we have defined several tests to evaluate speech synthesis in the context of TC-
STAR. The development of speech technology in TC-STAR is evaluation driven. Assessment of 
speech synthesis is needed to determine how well a system or technique compares to others or how 
it compares with previous version of the system.  

In order to make a useful diagnose of the system in TC-STAR we will not only make a test of the 
whole component but also specific tests for each module of the speech synthesis system. In this 
way we can assess better the progress on specific modules. Furthermore, it allows identifying the 
best techniques in the different processes that are involved in speech synthesis. To allow the 
comparison of different modules we have defined a common specification of the modules and 
specific test for their evaluation. 

Text-to-speech systems perform a range of processes, from text normalization, pronunciation, 
several aspects on symbolic and acoustic prosody, etc.  Finally we are interested on the quality of 
the overall system. However, the evaluation of the whole (black box evaluation) does not allow 
pinpointing which part of the system causes the most relevant problem. Furthermore, this method 
does not allow participating on the evaluation to small teams of researchers whose specialty of 
research is in one specific topic. In TC-STAR we will certainly evaluate whole systems, but we 
also want to evaluate different tasks to drive more valid conclusions about the results of different 
algorithms. Defining modules, with well defined input and output allows keeping constant all the 
modules except one and comparing the results caused by the algorithms involved on that module 
(glass box evaluation). 

There are many processes involved in speech synthesis. Researchers working in a particular one 
would prefer to make specific tests to evaluate that process. For instance, some tests have been 
proposed to evaluate each aspect of prosody, from intonation, pausing, accentuation, etc. However, 
from a pragmatic point of view, when designing a general evaluation framework, the number of 
modules needs to be limited. The evaluation of speech synthesis involves in many cases human 
evaluation and is needed to limit the number of test for each campaign. Also, in order to compare 
different systems only generic modules can be defined because not all the systems are built up of 
the same processes. Furthermore, although we assume that speech synthesis is built up of 
independent modules, in fact this is not absolutely true. For instance, a promising area of research 
is modeling the correlation between the different features related with prosody (f0, duration, etc.). 
Keeping these processes together allows modeling this interaction. Therefore, there is a 
compromise in the number of modules. In TC-STAR we define three broad modules: symbolic 
preprocessing, prosody generation and acoustic synthesis. The modules have been defined through 
their interfaces, i.e., the formal description of the input and output. 

Finally, in WP3, two specific areas of research are voice conversion and expressive speech 
synthesis. In order to evaluate the research specific tests have been defined. 

The following tests have been defined (cf. D8): 
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3.1 Evaluation of modules. 

Module 1: Text analysis. The goal of the text analysis is to transform the orthographic input string 
to the representation of the sounds. It involves text normalization, which transform ambiguous text 
such as numbers, dots and abbreviations into non-ambiguous words (which are known as “standard 
words”). In the case of Mandarin, this module segments the character stream into words. This 
module also copes with grapheme to phoneme conversion and with the assignment of lexical stress 
and syllable boundaries. Furthermore, this module tags the words with the POS (part-of-speech 
label), which is needed for prosody assignment.  

• Test M1.1: Text Normalization 
• Test M1.2: Word Segmentation (Mandarin) 
• Test M1.3: Evaluation of POS-tagger 
• Test M1.4: Evaluation of grapheme-to-phoneme 

Module 2: Prosody. The output of the second module is acoustic prosody (cf. D8), defined as the 
F0-contour, intensity contour and phoneme (+ pause) duration. Other parameters as voice quality 
can be included in the second phase of the project. 

• Test M2.1: Evaluation of prosody (using segmental information, resynthesis) 
• Test M2.2: Judgment test using delexicalized utterances 
• Test M2.3: Functional test using delexicalized utterances (identify written sentences 

which the produced delexicalized prosody) 

Module 3: Speech generation. The third module produces speech from the phonetic and (acoustic) 
prosody description. Segmental quality or segmental identification is one of the main factors in 
getting good overall quality. Intelligibility and quality are the two needed characteristics of the 
produced voice. 

• Test M3.1: Evaluation of speech generation module: functional test (transcribe 
semantically unpredictable sentences). 

• Test M3.2: Evaluation of speech generation module: judgment test (naturalness and 
intelligibility) 

3.2 Evaluation of specific research topics. 

As mentioned before, specific test have been defined to evaluate some specific research activities 
in the project. 

Voice Conversion. Voice conversion is the adaptation of the characteristics of a source speaker’s 
voice to those of a target speaker. The final goal of the project is to adapt the speaker 
characteristics using few data from the target speaker and with source and target in different 
languages. However, in the first evaluation the task is limited to intralingua voice conversion. The 
evaluation criteria is the speaker identity (goal) but also the quality of the voice.  

• Test VC.1: Evaluation of research on voice conversion excluding prosody. (all the 
comparisons use the same prosody so that it does not influences in the identity 
judgment) 

• Test VC.2: Evaluation of research on voice conversion including prosody. 
(comparisons use natural prosody: includes work in prosody adaptation) 
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Expressive speech. Most of the evaluation procedures in expressive speech are functional tests 
related with emotion: synthetic speech is produced using one of a given predefined set of emotions. 
The subjects are asked to identify the emotion on the speech (close set answer). The aim of TC-
STAR is not to produce emotional speech but expressive speech. One characteristic of expressive 
speech is that it can signal para-linguistic information using prosody. Produce expressive speech 
from general text requires very high knowledge of the world and high cognitive capabilities. 
However, in TC-STAR we want to explore how some para-linguistic information can be derived 
from the source speech and used to produce the synthetic voice.  

• Test ES: Evaluation of research on expressive speech (judgment test about the 
expressivity of the voice and the appropriateness of the expression given the content) 

3.3 Evaluation of speech synthesis component. 

The speech synthesis systems are evaluating using a test based on ITU.P85 (judgment test over 
several aspects of the synthetics voice) 

4. Baseline systems for research and evaluation of speech 
synthesis 

The creation of TTS baseline systems for UK-English, Spanish and Mandarin is highly dependent 
on the availability of language resources. The specifications for LR collection have been finalized 
(see D8 of WP3), but the LR creation work is still in progress in the project. However, certain 
algorithm development for the baseline systems can be done without the final LRs. This section 
describes the contribution of the WP3 partners: Nokia, Siemens and UPC for baseline system 
development during the first project year.  

4.1 Nokia 

During the reporting period, Nokia has further developed its existing waveform concatenative TTS 
system, which it intends to use as baseline for TTS evaluations. In legal terms, Nokia will utilize 
amalgamated SW for the TC-STAR evaluations. All parts of the system (text processing, prosody 
modeling and acoustic synthesis) have been under development. Since the production of language 
resources is still ongoing in the project (see Section 2), Nokia has preliminarily relied on its in-
house Mandarin language components for the work. We have had four conference publications in 
the TTS area during the reporting period. 

Work on TC-STAR architecture 

The system has been brought to the modular structure as proposed for TC-STAR and ECESS. 
However, the TC-STAR evaluation API is not yet integrated. This work is planned for the 
following months. 

Work on Text Processing Module 

On the text pre-processing front, Nokia improved its existing framework by refining text 
processing rules and grapheme-to-phoneme (GTP) conversion. Some work has been spent on 
defining an automatic scheme for optimal selection of training data for GTP [Tia05], and on an 
improved syllabification method [Tia04a]. Moreover, Nokia investigated footprint reduction 
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techniques for TTS pronunciation dictionaries [Tia04b]. Some of the above results are applicable 
also to other languages than Mandarin. 

Work on Prosody Module 

Concerning prosody modeling, Nokia improved its basic statistical framework for prosody 
modeling. A special emphasis has been put on the representation of pitch information, which is 
especially important for Mandarin, being a tonal language. 

Nokia introduced a novel concept called syllable-level eigenpitch [Tia04c]. With this new 
parametric representation, the tonal patterns of the language are well preserved.  

Work on Acoustic Synthesis Module 

The research work on acoustic synthesis has been focused on two topics in the reporting period. 
First, the distortion measure used in unit selection was refined to use an optimum combination of 
pitch, duration and context information. Second, Nokia investigated alternative methods to 
PSOLA-based unit concatenation and smoothing for synthesis. In addition, some effort has been 
spent on the refinement of in-house Mandarin resources, namely, a subset of syllable units were 
picked from the acoustic database to provide better quality synthesis and lower footprint.  

4.2 Siemens 

Siemens has developed and is further developing a speech synthesis system called 
‘Papageno_embedded’ for several languages tuned to embedded systems. Due to the restrictions in 
memory and processing power the system is based on diphone synthesis, leading to restricted 
speech quality. Before the start of TC-STAR preliminary work has been started [Hol00] to develop 
a system called Papageno-Server dedicated to generate high quality speech synthesis. The R&D 
done within TC-STAR where Siemens is responsible for developing a speech synthesis baseline 
system for UK-English, is a continuation of the work done on Papageno-Server. In legal terms 
Siemens will provide amalgamated software to TC-STAR.   

The Papageno technology, which is common for both systems, is based on the following principles: 

 Separation of language independent program code and language resources as far as possible 
 Using an architecture based on the modules: text processing, prosody generation and acoustic 

synthesis. 

This approach comes close to the architecture as proposed within ECESS, which is used within TC-
STAR. In the first year the work was focused on supporting the envisaged TC-STAR architecture 
and optimizing the text processing module. 

Work on TC-STAR architecture 

The basic operations of a system as loading the language resources, starting and stopping the 
system have been made available on the interfaces of the system modules. Due to this work the 
modules are well encapsulated with well-defined interfaces leading to modules, which can be easily 
exchanged as foreseen in ECESS. Further the modules can be easily adapted to new languages 
loading the language resources needed. This work has to be continued. Especially the not yet 
specified TC-STAR evaluation API has to be integrated. 
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Work on Text Processing Module 

This work concerns the activities 

 POS-tagging 
 Grapheme-to-Phoneme Conversion 
 Number handling 

A tagger named synther [Sue03] has been developed, which was trained and tested on the WSJ 
Corpus using the Penn Tree bank POS system. With 1,2 Million word tokens for training and 
20000 word tokens for test, a POS error rate of 3% for known words and of 11% for OOV words 
were achieved. This tagger has to be further optimized to decrease the error rate of OOV words and 
has to be extended to detect potential end of sentences.  

For grapheme-to-phoneme conversion, the code based on neural nets was already developed in 
previous Papageno projects [Hai04]. Several tests have been performed for UK-English. 

In order to handle numbers in the context of dates, weights, etc. language specific rules e.g. for 
UK-English will be developed. For this purpose a dedicated interpreter has been developed. 

Work on Acoustic Synthesis Module 

Work has started on investigating suited methods to select speech segments out of the voice corpus. 
It is planed to implement a triphone based concatenation search. Full work can start as soon the 
first voice corpus is ready. 

4.3 UPC 

The UPC Text-to-Speech system. 

UPCTTS, the text-to-speech system from UPC is a multilingual system able to read text in several 
languages. The architecture of the system consists of a pipeline of modules that communicate 
through a rich data structure called multi-layer. This structure is able to represent the linguistic an 
acoustic properties of speech. Each module processes the input data and adds new information. The 
general principle is that modules code language independent technologies and the language 
dependencies are coded using external data. In most of the cases the information in the external 
data is derived automatically from data but some specific parts, as word normalization uses 
knowledge-based rules. The system includes a development suite including interpreted language, 
plugging facilities and scripting, so that different system configurations can be easily evaluated. 
Furthermore, several high-level interfaces have been developed, including SAPI.4 and SAPI.5. The 
system comprises modules for text processing (mark-up language, tokenization, word 
normalization, POS tagging, phonetic transcription), prosody generation (phrasing, duration 
assignment, f0 contour derivation, energy contour) and acoustic synthesis (unit selection, 
concatenation and manipulation). The most relevant proposals found in the literature have been 
implemented, especially in the field of prosody generation. 

Work on Text Processing Module 

At the beginning of the project the system derives the phonetic transcription using a knowledge-
based approach. A dictionary containing canonical transcription was used combined with a set of 
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rules for OOV words. During this year some work has been done on a data-driven based grapheme-
to-phoneme algorithm. Several algorithms have been evaluated including CART based, Support 
Vector Machine and Finite State Transducers. In preliminary results, Finite State Transducers give 
the best performance. Further work is required to derive syllabic boundaries and lexical stress. 

Work on Acoustic Synthesis Module 

Our system is based on unit selection. Segments of the database are selected to match the acoustic 
and phonologic features of the required units and to reduce the concatenation mismatch. The basic 
unit is diphone but the phonologic costs push the algorithm to select triphones or even words. 
Furthermore, the concatenation cost pushes the algorithm to select longer units. At the beginning of 
the project the concatenation cost only used F0 and energy parameters but not spectral information. 
During this year this information has been added to the concatenation cost. 

The concatenation and manipulation module is based on PSOLA. In fact, in most of the cases, the 
PSOLA algorithm is only used to concatenate the units because usually the units found in the 
database have acoustic features which are similar to the ones needed. Till now the concatenation 
point between two segments was defined by hand, during the labelling of the speech database. In 
TC-STAR we have decided to segment part of the database automatically and include only the 
phoneme boundaries (not the concatenation point). Therefore, we have implemented an algorithm 
to select automatically the concatenation point. It consists on sweeping within some restrictions 
two adjacent units looking for the lower spectral distance between the two concatenation point 
candidates. This algorithm alleviated the problem on automatic segmentation. Perceptual 
experiments show that the quality is the same than the quality using hand-labelled concatenation 
points. 

5. Voice conversion, manipulation and compression 

This chapter describes the research progress on voice conversion, manipulation and compression. 

Voice conversion aims at changing a reference voice into another given voice, allowing to 
customize a system to a given voice using few resources or to create a ‘unique’ corporate voice in 
many languages (cross-language voice conversion) [Sue05a]. The same technology is to be used at 
the segmental level to produce expressive speech [Kaw03] (cf. Chapter 6). 

In particular, two issues are addressed: the speech representation and the transformation of 
parameters describing speech. This leads to two further activities within the scope of the TC-Star 
work package 3: fundamental research on speech generation models and on speech manipulation 
with very low degradation levels. E.g., speech features as prosody, frequency of voicing, formant 
position, or spectral tilt are to be manipulated without affecting the speech quality. Deeper insight 
into the generation of speech often leads to surprising approaches for speech compression which is 
another WP3 activity. Here, the main goal is to achieve high compression factors while preserving 
the speech quality. 

Over the last twelve months, in particular, the following issues have been focused on by the 
involved partners (in doing so, they used their own preexisting language resources since the TC-
Star speech corpora are not yet available): 

• Nokia’s research on voice conversion has been based on parametric modeling of speech. 
During the first part of the project, the research has mostly focused on the conversion of the 
vocal tract contribution using a linear transformation derived from a GMM representation 
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of the source and target speech parameterized as LSFs. The conversion of the excitation 
part has also been tentatively studied. The results achieved so far have been very promising 
but additional research will still be needed to reach the full potential of the parametric 
approach. (Nokia) 

• A recently published approach to text-independent VTLN-based voice conversion was 
extended to be applicable to GMM-based voice conversion training. This is important since 
several applications require the training data of source and target speaker to be non-
parallel. Besides, in the future, this technique is to be used for cross-language voice 
conversion as well. However, up to now, text-independent approaches still significantly 
degrade the quality of the converted speech. (Siemens) 

• When using GMM-based voice conversion, the spectral envelope is parameterized (to 
LPC, LSF, or MFCC) and compressed to only a few parameters. After conversion, the 
parameters are transformed back to time or frequency domain and concatenated by means 
of PSOLA techniques. It is obvious that due to the strong signal compression (e.g. from 
200 samples of a certain time frame to 16 LSF coefficients), a lot of spectral details are lost 
resulting in a harsh signal quality. As former publications suggested, this problem can be 
overcome by predicting the residuals of the converted time frames. Several residual 
prediction techniques proposed in literature were compared with a novel approach based on 
a time-variant smoothing. It turns out that the smoothing technique outperforms the others 
in terms of conversion performance and speech quality. (Siemens) 

• State-of-the-art voice conversion is based on a GMM describing the probability 
distributions of parameter vectors which represent the spectral information of the 
considered time frames. In operation phase, the coefficients of the GMM describing a time 
frame’s properties are converted to the target coefficients by applying a linear 
transformation. This is done independently for each frame, i.e., without taking preceding or 
subsequent frames into account. As it seems that dynamic characteristics play an important 
role when a speaker’s identity is to be converted, the GMM-based system is extended to an 
HMM-based system using dynamic features. (UPC) 

• Up to now, most of the voice conversion systems use only spectral information coded as 
parameter vectors. For conversion, a linear transformation is applied to these vectors. In the 
novel conversion system, the effects of including phonetic information in the training of 
the mapping function and of the transformation were investigated. In particular, the 
phoneme type, a voiced/unvoiced flag, the point of articulation, manner and voicing were 
considered. The training was carried out in an unsupervised way using CART decision 
trees. (UPC) 

• Currently, for high quality speech synthesis, a large amount of resources is required. For 
the use of speech synthesis in embedded systems, like mobile phones, toys, etc., this cannot 
be accepted. For such applications, the memory and time consumption has to be strongly 
reduced. In general, the largest part of the memory is required by the speech inventory. The 
inventory compression is carried out in three steps. At first, the number of stored speech 
segments (diphones, triphones, etc.) is limited, e.g. variants or infrequent segments are 
removed resulting in a baseline footprint of about 5MBytes for a diphone inventory @ 
16Bit, 16kHz. Then, the quantization or the sampling frequency are reduced, e.g. to 
telephone quality 8Bit, 8kHz. Thirdly, the speech is encoded using for instance adaptive 
multi rate (narrowband / wideband). (Siemens) 

• The current work on speech generation models is focused on extending speech models with 
appropriate parameters representing global speech features. This aims at manipulating the 
parameters in order to generate high quality speech signals with certain desired features. 
The main focus is to find an analyzing technique which extracts these speech features for 
manipulating and inversely synthesizing. Cepstral and sinusoidal models seem to feature a 
high potential in this area. (Siemens) 

© TC-STAR Consortium  page  21



TC-STAR Project Deliverable no. D9 TTS Progress Report 

• In order to explore new models for speech production and manipulation, several tools were 
developed. In particular, more complex parameter representations resembling the physical 
production system were investigated e.g. taking the glottal source and the vocal tract 
characteristics into account. A tool for speech analysis/synthesis has been developed using 
the deterministic + stochastic model (sinusoids + noise). Different methods for stochastic 
component extraction, analysis and synthesis and for deterministic component synthesis 
have been tried and compared. (UPC) 

In the following sections, the partners’ contributions are described in more detail.  

5.1 Nokia 

Nokia’s research on voice conversion has been based on parametric modeling of speech. During 
the first part of the project, the research has mostly focused on the conversion of the vocal tract 
contribution but the conversion of the excitation part has also been tentatively studied. The results 
achieved so far have been very promising but additional research will still be needed to reach the 
full potential of the parametric approach. Especially, the work on the excitation conversion must be 
continued as a part of future research.  

Signal representation 

To facilitate voice conversion, the speech signal is separated into vocal tract contribution and 
excitation signal. The separation is done using the well-known linear prediction (LP) scheme, i.e. 
using a source+filter model in which the source approximately corresponds to the excitation and 
the filter models the vocal tract. Furthermore, the excitation signal is represented using a parametric 
model. The parameters used in the model are pitch, voicing, gain (signal power) and the spectral 
representation for the excitation. A significant advantage of this model is that, in addition to its 
useful features from the viewpoint of voice conversion, it also lends itself to efficient compression. 

 

Conversion approach 

In our experiments, we have used the Gaussian mixture modeling (GMM) approach for the 
conversion. More specifically, the speech parameters are mapped using a locally linear 
transformation based on GMMs whose parameters are trained by joint density estimation. 
Combinations of aligned source and target parameter vectors, having the form z = [xTyT]T , are used 
to estimate the GMM parameters (α, µ, Σ) for the joint density p(x, y). The aim is to minimize the 
mean squared error [ ]2)(xFyEmse −=ε  between the converted source and the target speech. 
The conversion function F is 
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where Q is the number of mixtures and hi denotes the posterior probability that the ith Gaussian 
component generated x (using the Bayes formula). Moreover,  
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The parameters of the conversion function are unconstrained by allowing full covariance GMMs. It 
is also possible to perform simplified conversion with lower computational load by making the 
approximation that both Σi

xx and Σi
yx are diagonal. However, based on our experiments, it is usually 

beneficial to use full matrices. 

Conversion of the vocal tract contribution 

The vocal tract contribution is approximated using the linear prediction coefficients. For 8 kHz 
narrowband signals, we have used the LP order of 10 and the coefficients are estimated using the 
autocorrelation method. Before the actual conversion, the LP coefficients are converted into their 
linear spectral frequency (LSF) representation. This representation is used because of its favorable 
properties such as the guaranteed stability of the converted LP filter. 

As discussed above, the conversion is done using the GMM approach. The source parameter 
vectors (LSFs) are converted using the conversion function F with parameters from the trained 
GMM. The selection of the number of mixtures has a direct effect on the conversion quality. 
According to our experiments, a training set of nearly 300 sentences can be effectively modeled by 
an 8-mixture GMM. The exact effect that the size of the training set has on the output is still under 
study. 

The performance of this vocal tract conversion approach is dependent on successful training of the 
GMM model. More information on this aspect is given in the subsection called “Training of the 
conversion model”. 

Conversion of the excitation signal 

The most important excitation parameter, from speech perception point of view, is pitch. 
Consequently, we have first focused on this parameter. The parametric model allows very high 
quality pitch modifications and thus the main problem is to develop a good conversion technique. 
In our experiments, we have adjusted the pitch of the source speaker’s residual using a separate 
GMM and also using a single Gaussian to match the target’s pitch in average and variance. The 
results show that in practice a simple Gaussian model can perform the pitch conversion with 
similar quality as a 5-mixture GMM. 

We have achieved very promising results by converting only the vocal tract contribution and the 
pitch but, in order to achieve even better quality, it will be necessary to also convert the other 
parameters (gain, voicing and the excitation spectrum). The research work related to these issues is 
ongoing. Especially, the conversion of the excitation spectrum requires additional research since 
the conversion cannot be done in a straightforward way due to the variable dimension of the 
spectral vector. Some tentative experiments have already been made but there are no concrete 
results yet. 

Training of the conversion model 

As training data, we have used speech material containing identical sentences from the source and 
the target speakers. Before training, the speech signals used as training material are aligned in time. 
The alignment procedure contains two steps. The first step is to generate phoneme-level labels for 
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the sentences. In the second step, the actual alignment is done using interpolation in the parametric 
domain. The alignment is based on the phoneme boundaries labeled during the first step and on the 
results of the dynamic time warping (DTW) algorithm.  

At a more detailed level, the phoneme-level labeling is done automatically using Hidden Markov 
Model (HMM) based acoustic modeling. In the dynamic time warping step, we have made 
experiments by using different parameters in the alignment process: we have tried to use both line 
spectrum frequencies and Mel frequency cepstral coefficients (MFCCs). Further refinement of the 
alignment process is still ongoing. 

Once the parametric training materials have been properly prepared, the GMM training can be 
handled using conventional training techniques. We have used a K-means type training approach 
and the expectation-maximization (EM) algorithm [Dem77]. In our experiments, the EM technique 
usually gave better results. In general, the training can be carried out successfully. However, in 
some rare cases numerical problems have been encountered in the training of the GMM based 
conversion model for the pitch parameter. This has happened with certain numbers of mixtures due 
to the fact that a non-positive definite matrix was fed to the Cholesky routine. Our current 
understanding is that the numerical problems can be avoided in the final implementation. 

5.2 Siemens 

5.2.1 Voice Conversion 

Text-Independent Voice Conversion 

So far, all conventional voice conversion approaches are text-dependent, i.e., they need equivalent 
training utterances of source and target speaker. Since several recently proposed applications call 
for renouncing this requirement, we developed an algorithm which finds corresponding time 
frames within text-independent training data. 

The performance of this algorithm is tested by means of a voice conversion framework based on 
linear transformation of the spectral envelope. Experimental results are reported on a Spanish 
cross-gender corpus utilizing objective error measures, cf. [Sue04]. 

Automatic Segmentation 

We are given the magnitude spectra of speech frames. These spectra are distributed among K well-
distinct classes which can be regarded as artificial phonetic classes. This is done by clustering the 
spectra with the help of the k-means algorithm using the squared Euclidean distance as 
discrimination criterion. K-means delivers the class members as well as their centroid spectra kX . 

Class Mapping 

During training, we segment the given speech material of source and target speaker as described 

above. We get the source centroids kX  and the target centroids lY . Now, for each target class l, we 

want to know the corresponding source class . When comparing spectral vectors of different 
speakers, it is helpful to compensate for the effect of speaker-dependent vocal tracts. This is done 
by using dynamic frequency warping and, afterwards, we are allowed to assess the similarity of 
two classes by means of the Euclidean distance: 

)(lk
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Here,  is the distance between the frequency-aligned spectra derived from DFWD κX  and lY  
by dynamic frequency warping. 

Extracting Corresponding Time Frames 

Once we have mapped one source cluster to each target cluster, we can shift the latter in such a way 
that each centroid Y  coincides with the corresponding source centroid X . Finally, for each 

shifted target cluster member XYYY +−=′ , we determine the nearest member of the mapped 
source class, X, using the Euclidean distance. The desired spectrum pairs consist of the respective 
unshifted target spectra Y and the determined corresponding source spectra X: 

YXYX +−−= χ
χ

minarg . 

Parameter Training 

Instead of using parallel training corpora aligned by dynamic time warping, we apply the above 
described mapping algorithm to non-parallel utterances of source and target speaker and proceed 
with the conventional linear transformation parameter training (expectation-maximization 
algorithm for Gaussian mixture models). 

The Experimental Corpus 

The corpus utilized in this work contains several hundred Spanish sentences uttered by a female 
and a male speaker. The speech signals were recorded in an acoustically isolated environment and 
sampled at a sample frequency of 16 kHz. 

Objective Evaluation 

As objective error criterion we use the relative spectral distortion D which compares the distance 

between the converted speech (represented by the vector sequence 
Nx1

~
) and the reference ( ) 

with that between source ( ) and reference: 
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The following table shows the performance of both training methods based on parallel and on non-
parallel training data in terms of the above defined objective error measure. 
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  D 
text-dependent 0.39 male-to-female text-independent 0.47 
text-dependent 0.38 

female-to-male 
text-independent 0.49 

Table 5.1 Objective comparison between text-dependent and text-independent voice conversion 

Residual Prediction for Voice Conversion 

Several well-studied voice conversion techniques use line spectral frequencies as features to 
represent the spectral envelopes of the processed speech frames. In order to return to the time 
domain, these features are converted to linear predictive coefficients that serve as coefficients of a 
filter applied to an unknown residual signal. In our work, we compare several residual prediction 
approaches that have already been proposed in the literature dealing with voice conversion. We 
also describe a novel technique that outperforms the others in terms of voice conversion 
performance and sound quality, cf. [Sue05b]. 

Residual Selection 

The residual selection technique stores all residuals  seen in training into a table together with 

the corresponding feature vectors  that this time are composed of the line spectral frequencies 
and their deltas [Ye04]. 

nr

nv

In operation phase, we have the current feature vector v~  of the above described structure and 
choose one residual from the table by minimizing the square error between  and all feature 

vectors seen in training (  is the sum over the squared elements of a vector v): 

v~

)(vS

nrr ~
~ =  with )~(minarg~

,...,1 nNn
vvSn −=

=
. 

A Novel Approach: Residual Selection and Smoothing 

The novel technique described in this section is an integral approach that tries to simultaneously 
handle inaccuracies of the residual selection and phase prediction as well as the treatment of 
unvoiced frames by means of a time-variant residual smoothing. 

We are given the sequence Kr1
~  of predicted residual target vectors derived from the formula in the 

previous paragraph, a sequence of scalars  with K
1σ 10 ≤< kσ  that are the voicing degrees of the 

frames to be converted, and the voicing gain α . 

At last, we obtain the final residuals by applying a normal distribution function to compute a 
weighted average over all residual vectors Kr1

~ , the deviation is defined by the product of voicing 
degree and gain: 

∑
=

∗ ⋅=
K

kk rkNr
1

~),|(
κ

κασκ . 
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This equation can be interpreted as follows: In case of voiced frames ( 1≈σ ), we obtain a wide 
bell curve that averages over several neighbored residuals, whereas for unvoiced frames ( 0→σ ), 
the curve approaches a Dirac function, i.e., there is no local smoothing, the residuals and the 
corresponding phase spectra change chaotically over the time as expected in unvoiced regions 
[Sue05b]. This residual is normalized to have the same energy than before the smoothing. 

Subjective Evaluation 

The goal of the subjective evaluation of the described residual prediction techniques was to answer 
two questions: 

• Does the technique change the speaker identity in the intended way? 
• How does a listener assess the overall sound quality of the converted speech? 

We want to find the answers by means of an extended ABX test and a mean opinion score (MOS) 
evaluation.  

Now, 10 evaluation participants were asked if the converted voice sounds similar to the source or 
to the target voice or to neither of them (extended ABX test). Furthermore, they were asked to 
assess the overall sound quality of the converted speech on an MOS scale between 1 (bad) and 5 
(excellent). Table 5.2 reports the results of the extended ABX test and Table 5.3  those of the MOS 
rating depending on the residual prediction technique and the gender combination. The methods not 
included in this section are described in [Sue05b]. 

% source target neither 
source residuals 

reference residuals 
codebook method 
residual selection 

selection & smoothing 
selection* & smoothing 

20 
0 
0 
0 
0 
0 

10 
79 
70 
70 
85 
80 

70 
21 
30 
30 
15 
20 

Table 5.2 Results of the extended ABX test 

 

 m2f f2m total 
source residuals 

reference residuals 
3.2 
3.0 

3.7 
3.0 

3.5 
3.0 

codebook method 
residual selection 

selection & smoothing 
selection* & smoothing 

1.6 
1.7 
2.2 
2.2 

1.9 
2.3 
2.9 
2.8 

1.8 
2.0 
2.6 
2.5 

Table 5.3 Results of the MOS  test 

Conclusion 

We compared several residual prediction techniques to be used for voice conversion. The presented 
residual selection technique with smoothing outperforms the others in terms of voice conversion 
performance and speech quality. However, subjective tests show that, in general, voice conversion 
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still perceptibly deteriorates the quality of the source speech whereas most of the compared 
techniques succeed in converting the speaker identity. 

5.2.2 Speech Generation Models 

The current work is concentrated on further developing speech models with appropriate parameters 
representing main speech features. The goal is to manipulate the parameters in order to generate 
high quality speech signals with desired features. The main focus is to find an analyzing technique 
which extracts these speech features for manipulating and inversely synthesizing. Cepstral and the 
sinusoidal models seem to feature high potential. 

The parameters of the cepstral model are filter coefficients which represents spectral characteristics 
of the vocal tract. The input of the filter is a signal with a flat spectrum. The output is a minimal 
phase speech signal. Manipulation of the base f0 is done by changing the pitch frequency of the 
input signal. Phoneme durations correspond to the rapidness of updating filter coefficients. 
Advances in speech signal quality seem to be possible by enhancement of the input signal. 

The widely used Fourier transformation for analyzing speech segments causes several 
disadvantages. A concurrent analyzing technique is the sinusoidal modeling. It offers better 
parameters which are easier to manipulate. The extraction of the proper parameters is harder than 
the extraction by means of the Fourier transformation. 

5.2.3 Acoustic Synthesis for Low-Footprint Systems 

Currently, for high quality speech synthesis, a large amount of resources is required. For the use of 
speech synthesis in embedded systems, like mobile phones, toys, etc., this cannot be accepted. For 
such applications, the memory and time consumption has to be strongly reduced. 

State-of-the-art systems for text-to-speech (TTS) conversion use speech segments from recorded 
natural speech. This method offers better naturalness compared to the parametric synthesis used in 
former systems. The segments are concatenated in time domain. As the concatenation points affect 
the quality of the synthesized speech, there is a tendency towards large segments by which the 
number of these points is minimized. Of course, this approach requires a large amount of speech 
data which occupies memory space of about 5 … 10 megabytes for a simple diphone inventory up 
to some gigabytes for larger corpora. It is necessary to compare these requirements to the resources 
available in embedded systems. Although they are growing with the technical progress in general, 
they are limited mainly by the expenses. There seems to be a “magic” border of 1 megabyte for the 
footprint of a TTS system as a whole, this means the program code as well as the databases 
including speech segments, rule systems, etc. [Sch02]. 

Inventory Compression 

It is quite obvious that only the “smallest” of the concatenative TTS systems offers the chance to be 
shrinked to a footprint of 1 megabyte. This means that it will use a diphone inventory that limits the 
naturalness to a certain degree. 

Starting point is the uncompressed diphone inventory with the size of approximately 5 megabytes 
at 16 kHz sampling rate and 16 bit quantization (256 kbit/s). Pitch markers and the descriptions of 
all units (diphones) are included in the inventory. 
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At a first step, the bandwidth could be reduced to telephone quality to adjust the application 
environment. With regard to halve the sampling rate the size reduction amounts to 50 % (128 
kBit/s).  

For further reduction, the following encoders are used and tested [Str03]: 

1. Adaptive Differential Pulse Code Modulation (ADPCM) 

The ADPCM codec records the difference between adjacent samples of the signal and 
adjust the coding scale dynamically to accommodate large and small differences. 

Applying the codec to the speech units of the inventory, a reduction rate of 4:1 is 
achievable. The size of the resulting 8 kHz 4 bit-ADPCM inventory is about 800 kByte. 

2. Adaptive Multi Rate-Narrow Band (GSM AMR-NB) 

The AMR-NB is a special speech codec and works on the principle of Algebraic Code 
Excited Linear Prediction (ACELP). It has eight basic bit rates: 12.2, 10.2, 7.95, 7.40, 6.70, 
5.90, 5.15 and 4.75 kbit/s. At the encoder side, the speech signal frames are decomposed in 
an excitation signal and corresponding filter coefficients for spectral weighting. The 
decoder synthesizes the speech signal by filtering the reconstructed excitation with the 
coefficients calculated by the transferred line spectrum frequencies (LSF). According to the 
used bit rate, compression rates from 10:1 to 27:1 are achievable and result in inventory 
sizes of about 350 to about 170 kBytes. 

3. Adaptive Multi Rate-Wide Band (GSM AMR-WB) 

The AMR-WB codec works in a similar manner as the AMR-NB with respect to the 
enlarged bandwidth of internal 12.8 kHz. The decoder output at 16 kHz is achieved by 
enhancing the signal at upper frequencies with noise estimated from the lower frequency 
bands. The following bit rates are adjustable: 6.60, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85, 
23.05 and 23.85 kbit/s. 

According to the used bit rate, compression rates from 10:1 to 38:1 are achievable and 
result in inventory sizes of about 640 to about 210 kByte. 

Acoustic Synthesis with Compressed Inventories 

Acoustic synthesis consists of applying prosodic targets to selected speech units of the inventory 
and concatenating them. Due to the principle of some speech codecs, especially Linear Prediction 
(LP) based codecs like AMR, the acoustic synthesis is integrable in the decoder [Hof03]. The 
manipulation of the speakers’ base f0 can be done on the excitation signal before the filtering step 
of the decoder. By deleting or doubling excitation frames, the target phoneme durations are 
manipulable at the excitation domain as well. 

5.3 UPC 

5.3.1 Voice Conversion 

An already proposed, mapping function for vocal tract conversion is based on GMM as a model for 
joint source and target acoustic space. To estimate the GMM, aligned source-target feature vectors 
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are used. GMM-based systems work frame by frame, using only spectral information to learn the 
mapping and transform voices. Our study has been focused on the following points: 

• The effects of including dynamic characteristics in the acoustic model used to build local 
vocal tract mapping functions. For this reason, GMM-based systems are extended to 
HMM-based systems, which can model dynamic characteristics. 

• The effects of including phonetic information in the learning of the mapping function and 
in the transformation. The learning will be carried out in an unsupervised way by CART 
decision trees. 

HMM-Based Vocal Tract Conversion 

The block diagram of a HMM-based VC system is presented in Figure 5.1. In the training step, an 
HMM is estimated from LSF training vectors and then a conversion function is calculated for each 
state of the HMM. In the transforming step, the HMM is used twice. First, source data is segmented 
according the HMM states. Then, each frame is transformed applying the state-dependent 
conversion function. 

Source data

Training data

Transformed data

HMM estimation

Segmentation

Conversion 
func. estimation

ConversionSource data

Training data

Transformed data

HMM estimation

Segmentation

Conversion 
func. estimation

Conversion

 

Figure 5.1 Block diagram of an HMM-based voice conversion system. 

Source HMM-Based System 

The basic idea of this system is to model the dynamics of the source speaker with an ergodic 
HMM. The steps for training the conversion function are the following. First, a source HMM is 
estimated from source data. Then, using the estimated HMM, source training vector sequences are 
segmented according to the optimal state path (using Viterbi search). All the vectors, with their 
target alignments, are collected for each state, and N (number of states) joint Gaussian functions are 
estimated. Finally, by regressing the function for each state, we have: 
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This is a conversion function, where s indicates the state, x and y aligned source and target vectors, 
and µ and Σ mean vectors and covariance matrices. To transform a new sequence, we need to 
segment it according to the source HMM. Then, the conversion function of each state is applied to 
each state parameter. 

Joint HMM-Based System 

As it has been previously done with GMM systems, we introduce joint information in order to 
allocate the distribution functions more judiciously, and also to use both source and target dynamic 
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information. So, using aligned source-target features vectors, a joint HMM is estimated. Like in 
joint GMM, there is no need of an extra step to calculate the mapping function for each state. Since 
there is a joint Gaussian per state, we can calculate their regression function straight forward. In the 
conversion phase, the best state sequence is the one that maximices the probability of the input and 
thee state dependent transformation (x, Fs(x)). 

Decision Trees-Based Vocal Tract Conversion 

Previous GMM-based systems work with spectral features to estimate the conversion function and 
to transform new source spectral vectors. The inclusion of phonetic information for each frame, 
such as the phone, a vowel/consonant flag, point of articulation, manner and voicing, was studied. 

To estimate the mapping function, a CART decision tree has been used. The tree extracts, at each 
splitting step, overlapping regions of the acoustic space that can be represented by only one 
acoustic class, modeled by a joint probability function. The procedure to grow the tree is as 
follows. A GMM-based voice conversion system with one component is estimated from a training 
data set for the parent node (the root node in the first iteration), and an error index for all the 
elements of the validation data set is calculated. The error index used is: 

∑
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where xm , ym and ym
conv are the source, target and converted mth frame respectively, and D(·) 

indicates an inverse harmonic mean distance. 

Then, all possible questions of the form ‘phonetic property n=value’ are evaluated and two child 
nodes are populated for each question. For each child node, a GMM with one component is 
estimated and the error index for the vectors of the validation set corresponding to this child node is 
calculated. The decision to let the tree grow is: 
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where elemchild indicates the number of spectral vectors of the validation set belonging to the child 
node. Only when this decision rule is positive and the number of training frames is higher than 25, 
this node is a candidate to be split with this question. At each iteration, the node with the decision 
rule with higher value for any question is split according to that question. The tree grows until there 
is no node candidate to be split. 

To transform new source vectors, they are classified into leafs according to their phonetic features 
by the decision tree. Then, each vector is converted according to the GMM-based system belonging 
to its leaf. 

Conclusions 

We have evaluated the three explained vocal tract conversion systems and a GMM system by 
objective and perceptual criteria. According to objective criteria, when few training data is 
available, GMM, source HMM and CART systems perform in a similar way. But when the amount 
of training data increases, CART systems outperform GMM and source HMM. So, the inclusion of 
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phonetic information allows a better splitting of the acoustic space. Also, CART systems do not 
need any parameter tuning, a very computationally expensive part of GMM and HMM-based voice 
conversion. However, CART systems need training phonetically labeled training data, that restricts 
their applications. 

Concerning the use of joint source-target information to estimate HMMs, from the experimental 
results it seems better to use only source data. We must take into account that using joint data 
increases the vector dimensions and there can be more inaccuracies from estimations with few 
training data.  

The listeners reported that all the methods explained in this document succeed in changing the 
speaker identity. When they are asked about GMM and source HMM systems, they were not able 
to notice any difference. But, when GMM-CART pairs were compared, listeners preferred the 
CART system in 71% of the cases. These perceptual results are correlated with the objective 
results. 

5.3.2 Voice Source Modeling and Voice Quality 

We are currently developing tools to automatically perform source-filter deconvolution of the 
speech signal. We try to obtain useful parameters related to voice quality and a parameterized 
representation of both the glottal source and the vocal tract. 

The main goal is to obtain a signal representation useful for performing expressive speech 
synthesis, voice conversion, and other applications requiring finer grain control of the voice 
properties. Traditional synthesis techniques based on concatenation of pre-recorded signals (e.g. 
TD-PSOLA, LP-PSOLA) are limited in the amount of modifications that can be performed. Thus, 
more complex representations resembling the physical production system are needed. We are using 
a simplified model of the human speech production system composed by two main blocks: the 
glottal excitation, consisting of a glottal source and additive aspiration noise, and the vocal tract 
filter, modeled here as an all-pole filter. This is somewhat unrealistic, since in reality there is 
physical interaction between the source and the vocal tract. With this simplification, the complexity 
of the synthesis model is reduced and several techniques can be used to estimate both the vocal 
filter and the glottal excitation. 

Our current work in determining the parameters of this model is based on inverse filtering. If we 
know which filter was used, we can inverse-filter the speech and obtain the glottal excitation. As 
we do not know the filter, we need to make some assumptions. We use a widely accepted 
mathematical description of the glottal excitation (KLGLOTT model), and perform a joint 
estimation of its parameters together with the filter coefficients. 

We are trying different approaches to obtain the parameters. So far, the technique giving the best 
results is to approach the estimation problem as a convex optimization procedure, where the mean 
square error between the resulting synthetic speech and the original speech is reduced. 

In order to improve the quality of the overall system, the glottal excitation is re-parameterized 
using a more realistic model (LF model). We are experimenting with different approaches to do 
this automatically. A direct way to determine the LF model’s 4 parameters (3 time instants and the 
amplitude) is to perform an initial estimation by inspection of the inverse-filtered speech (noisy 
glottal excitation). Because of the noise, it is necessary to apply an optimization process to this 
initial estimation to reduce errors. We are working now with different techniques (e.g. gradient-
descent methods, Newton algorithms, Simplex search) and different objectives (e.g. minimization 
of the root mean-squared error).  
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We are in the preliminary stage of using some of the techniques used in CELP speech coding to 
improve the quality of the synthetic speech (incorporating perceptual information to the 
minimization-error criterion, so that we focus on the most perceptually relevant features). 

A tool to extract different standard voice quality measures from this model is under development. 
By means of these measures, we expect to be able to add useful information to the signal 
generation module of the speech synthesizer, in particular to synthesize expressive speech. Another 
application is to improve the quality of our current voice conversion system by adding the voice 
quality measures or the glottal parameters to the set of parameters currently used to perform the 
conversion. 

5.3.3 Speech Analysis, Synthesis, and Manipulation Based on the Deterministic 
+ Stochastic Model 

A tool for speech analysis/synthesis has been developed using the deterministic + stochastic model 
(sinusoids + noise). Different methods for stochastic component extraction, analysis and synthesis 
and for deterministic component synthesis have been tried and compared. No significant 
differences have been found between them. The synthetic signals obtained are almost 
indistinguishable from the original when the phase information is kept. Synthesis without phase 
information has been studied, and a high quality of sound was reached. The block diagram of the 
system is shown in Figure 5.2. 

Time-scale and pitch-scale transformations have been implemented, and several alternatives for 
phase reconstruction have been evaluated, by means of simple frequency linear interpolation or 
vocal tract estimation. The quality of the transformed synthetic signals is high, but it is still worse 
than the quality achieved by PSOLA methods. 

 

Figure 5.2 Block diagram of the analysis/modification/synthesis tool. 
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Concatenation of parameterized speech fragments following the deterministic + stochastic model is 
currently being investigated. Future work will be focused on voice conversion between different 
speakers and reducing the amount of training data necessary to perform the conversion. 

6. Prosody modeling and expressive speech  

6.1 Introduction and general framework 

The work reported in this section has been done by UPC. Other partners have done some work on 
speech prosody but it has been reported in section 4, baseline systems for research and evaluation. 
In particular, a new approach has been proposed by Nokia to model prosody of Mandarin and other 
tonal languages using what has been named as eigen pitch. 

In this section we report the general framework and the progress done to improve the expressivity 
of the speech synthesis in a speech-to-speech translation system. Usually speech synthesis focus on 
the linguistic information. However, using expressive speech much more information can be 
provided. For instance, the same words can have different, event contradictory meanings, 
depending on the intonation. Speech is able to give a lot of information from the speaker, for 
instance which is his emotional state or his/her attitude towards the message or towards the 
audience. However, convert text into expressive speech is a very difficult task. First of all, because 
some of the information, as the emotional state, is not included in the text. Sometimes the 
information is in the text (for instance the focus in a new message, or the typical speaker attitude 
towards certain information) but it cannot be deduced with today in unrestricted domains using 
today semantic and pragmatic models. Expressive speech is important in many applications of 
speech synthesis, for instance entertainment and education. In particular, it is very important in 
speech-to-speech translation because the source of the information is a speaker, not a writer. 
Therefore, speech contains this paralinguistic information that should be deliver to the listener. 

In TC-STAR the key idea is to use information derived from the source speaker. For instance, if the 
speakers reveals surprise, this information should be preserved in the target speech. Of course this 
is a very ambitious and complex goal: how surprise is produced in speech may be language and 
event speaker dependent. Furthermore, defining the number of states (as surprise) and the degree is 
a very complex task. Instead we try to infer information about acoustic prosody and map the input 
prosody into the target speech. Several features are derived from the input speech using prosodic 
extraction algorithms. These features are mapped into the target text using the alignment 
information provided by the automatic translation system. In this way, one or several words in the 
source text may be mapped onto one or several words in the translated text. This new features are 
added to the linguistic information (i.e. the translated text) to produce synthetic speech. Figure 6.1 
shows the architecture of a speech to speech translation system. Figure 6.2 shows the architecture 
of a speech to speech translation system with embedded prosody translation [Ekl95]. 

The prosody extraction module inserts additional information into the output text of the speech 
recognition module. Then, the transfer (prosody mapping) performs the transformation of the input 
prosodic annotation into the output text of the text translation module taking into account alignment 
information. Finally, the speech synthesis module produces the output waveform signal using the 
prosody generated by the prosody generation module, which takes advantage of the enriched input 
text. 
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Figure 6.1: Architecture of a speech to speech translation system 

 

Figure 6.2: Architecture of a speech to speech translation system with embedded prosody translation 

Some preliminary experiments have been done to use the extracted information in speech synthesis, 
using a bilingual corpus, Spanish-Catalan from the tourist domain. The results are promising as 
information from the source is one of the main features used to derive the intonation. 

During the first year the main work has been on generation of prosodic information: in order to 
include new features it is required that the prosody models are data driven and robust. Next section 
reports on the studied methods for phrase break prediction and intonation prediction which are two 
of the main prosodic features. Then, section 6.3 report some work on extraction of prosodic 
information.  

6.2 Generation of the output prosody 

This section reports on the studied methods to predict phrase breaks and intonation from text. In the 
next phase of the project, this methods will be extended to include other features derived from the 
source. To improve the performance of intonation models, a new training paradigm has been 
introduced. The idea is to use information from all the corpus to analyze each sentence. This can be 
seen as a top-down approach to intonation and provides robust estimations and better prediction 
results. This paradigm has been applied to two existing methods (Fujisaki and Tilt) and to a new 
one based on Bézier curves producing better objective and subjective results. 

6.2.1 Phrase break prediction 

In the literature several approaches have been proposed that use machine learning techniques to 
predict phrase breaks. In general, the methods consist of taking a decision after each word about 
whether a phrase break boundary must be placed or not. The decision considers context 
information and in some cases the previous decisions about the presence or absence of phrase break 
boundaries. Phrase break prediction is a difficult task because it highly depends on the meaning of 
the sentence, speech rate, domain, etc. In our work we explore several approaches to predict phrase 
breaks. We have proposed new methods or extended some published ones to compared the 
performance of the methods and to be able to include afterwards the new feautures [Bon04]. 

CART. This baseline method consists of the prediction of phrase breaks using classification trees 
and was proposed by Prieto et al. [Pri96]. The input features are: a 4-word POS window (POS: part 
of speech, morphological category of the word); 2-word window for pitch accents; the total number 
of words and syllables in the utterance; the distance of the word from beginning and end of the 
sentence in words, syllables, and stressed syllables; distance from the last punctuation in words; 
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whether the word is at the end, within, or at the beginning of an NP (Noun phrase), and if within an 
NP, its size and the distance of the word from the start of the NP.. 

CART-LM. One weakness of previous method is that decisions are made locally, without taking 
into account previous or next decision. But it is evident that the phrase breaks influence in the 
speech rhythm and phrase breaks are not independent. In fact, Prieto et al. [Pri96] included 
previous decisions in the next decision. In this extension we include the CART estimation not to do 
a hard decision but as the probability of having a phrase break. This information is combined with 
the probability of a break knowing the decisions made in previous words. This is modeled using 
language-model (LM) techniques. The Vitebi algorithm is used to find the best phrase-break 
positions given this two information souces.  

CART-LB. In this method, the duration in words of each major phrase is modeled explicitely, not 
using a language model (n-gram). The search is performed using a level building algorithm that 
iteratively find the best solution of including k phrase breaks. This method not only allows to 
obtain the best position of the phrase break boundaries, but also to select the frequency of phrase 
breaks. This can be selected according to the desired speech rate. 

Table 6.1 summarizes the results of the different algorithms using the F measure (which combines 
precision and recall).  

 

 

Table 6.1: Summary of F-measure for each method 

 F global F ¬P F P 
CART 80.13 80.04 79.92 
CART-LM 82.65 70.43 70.45 
CART-LB 87.32 81.05 81.02 

6.2.2 Intonation model 

JEMA: Joint Extraction and Modeling approach. 

The intonation model is an important component of text-to-speech systems which generates a 
suitable fundamental frequency contour for a given synthetic utterance. The intonation model 
training consists of two-stages: parameterization and rule inference using machine learning 
techniques.  

The parameterization of the fundamental frequency contour permits a better generalization for the 
machine learning techniques of the second stage. For example, the parameterization enables to 
extrapolate to cases where the duration of the sentence is different. Then, the rule inference using 
machine learning techniques finds a mapping between linguistic features extracted from the 
utterance and the parameterization of the fundamental frequency contour. Once the intonation 
model is trained, the application of the inferred rules to linguistic features of new sentences enables 
to obtain a set of parameters to synthesize a suitable fundamental frequency contour. 
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Figure 6.3: Two-stage approach 

Most of the data-driven intonation models are estimated using two stages. This procedure presents 
some characteristics that can cause some training problems: 

• Interpolation of fundamental frequency contour. An initial interpolation of f0 in the 
unvoiced regions is required. As this interpolation is somehow arbitrary, this may introduce 
noise in the extracted parameters: contours with the same F0 contour in the voiced parts 
may be represented by different parameters. This introduces dispersion in parameters 
reducing the accuracy of the machine learning techniques. 

• Multiple solutions. In some intonation models, different values of the parameters can 
represent the f0 contour with the same accuracy (e.g. mean square error, MSE). Again, this 
increases the variance of the parameters and reduces the accuracy of the machine learning 
techniques. 

• Sentence by sentence extraction. Sentence by sentence parameter extraction lacks general 
information about the intonation of the language. The f0 contour is noisy, in the sense that 
it is affected by micro-melody, errors in the measure, etc. To solve this the f0 contours are 
usually filtered before computing the parameters of the model. But this filtering is 
somehow arbitrary. The knowledge of all the other sentences could be used as a priori 
probability to derive the underlying parameters. 

The JEMA combines parameter extraction and model generation into a single loop [Agu04c]. The 
model generation is performed using machine learning techniques that cluster segments of F0 
contours from the training databases. Each cluster is considered as a class that is approximated by a 
set of parameters given the intonation model, e.g.: Tilt parameters. The parameter extraction is 
performed using an optimization algorithm that finds the global parameters that best represent all 
the contours of the cluster. As the same parameters are used for all the contours, stylization or 
unvoiced interpolation is not required. The extracted parameters are more consistent and the 
prediction capabilities of machine learning techniques that are used to generate a model are 
improved. Figure 6.4 shows the scheme of joint approach. Further details of the application of 
JEMA to different intonation models are given in the following sections. 

 

Figure 6.4: JEMA approach 
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Bézier intonation model. 

Escudero et al [Esc02] proposed a phonetic representation based on Bézier curves using the accent 
groups in Spanish as the phonological unit. Bézier curves are based on a polynomial function 
where its coefficients allow a representation that is more meaningful than the resulting polynomial 
coefficients in expanded form. This parameterization was proposed by Escudero in his PhD. thesis 
due to several reasons: 

• Representation capacity. The values of the coefficients are representatives of different 
portions of the contour. 

• Homogeneity of the representation. Curves with different duration but same shape have 
the same set of parameters. In this way, this representation has properties of elasticity. 

• Tunable accuracy. Increasing the order of the approximation reduces the approximation 
error. 

• Restrictions. It is possible to restrict the shape of the approximation, e.g: continuity of 
order 0 and 1 to obtain smooth resulting contours. 

The polynomial formulation is shown in equation 1 and the shapes of the base polynomials for a 
fourth order curve are shown in Figure 6.5. Bézier coefficients allow a meaningful representation 
compared with the final polynomial coefficients, which are more sensitive. 

   (6.1) 

 

 

Figure 6.5: Bézier polynomials 

Figure 6.6 shows an approximation of a fundamental frequency contour using Bézier curves for 
accent groups, with continuity constraints up to the first derivative.  
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Figure 6.6: F0 contour approximated usingpiece-wise Bézier curves with five coefficients 

JEMA approach. 

The joint optimization framework imposes that the formulation to extract the optimal polynomial 
coefficients is modified [Agu04b]. The optimization is performed minimizing the mean squared 
error, but taking into account that: 

• The error that is minimized is the global mean squared error. 
• Two components are combined using Bézier curves: the intonation contour is made up 

from additive components, one for each major phrase and one for each accent group.  
• The group of coefficients corresponding to a Bézier curve depend on a vector which maps 

minor phrase or accent group classes with positive integers (class number).  

The mathematical formulation is shown in equation 6.2. 

   (6.2) 

where: 

k
MPN  is the number of minor phrases of the  sentence. thk

k
AGN  is the number of accent groups of the  sentence. thk

)(tt k
MPi

 is the temporal axis of the  minor phrase of the  sentence. thi thk

)(tt k
AG ji

is the temporal axis of the  accent group of the  sentence. thj thk

k
MPi

C  is the number of the minor phrase class assigned to the  minor phrase of the  sentence. thi thk

k
AG ji

C  is the number of the accent group class assigned to the  accent group of the  sentence. thj thk
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In this function, PMP and PAG are the Bézier curves of the minor phrase and accent group 
components, respectively. Each curve has its own associated time axis, tMP(t) and tAG(t). The time 
axis range is zero to one. These curves are zero elsewhere.  

The joint cost function  is shown in equation 6.3. The goal is to minimize the mean squared error. 
This equation has a unique analytical minimum that is found using a set of linear equations.  

 (6.3) 

where: 

 Ns is the number of sentences. 

Tk is the duration of the sentence. 

Model training process 

The idea behind the training process is to find a set of minor phrase and accent group clusters 
(obtained using linguistic information) that are optimal in the sense of mean squared error and 
Pearson correlation coefficient. Mean squared error and Pearson correlation coefficient are chosen 
as the optimization indexes because there is a common consensus on intonation modelling about 
using them to measure the prediction accuracy. 

There are many ways to perform a clustering based on a set of parameters. Classification and 
regression trees [Bre84] are chosen, because of the capabilities to classify using continuous and 
discrete features. The information provided by the final tree can be valuable for future 
improvements or to get an insight of the main features related to the problem.Because of the 
superpositional approach, two independent trees are trained (accent group component tree and 
minor phrase component tree), with a joint optimization cost (Pearson correlation 
coefficient).Initially, each tree has a unique root node. As a consequence, there is only one minor 
phrase and accent group class. The steps performed to grow the trees are:  

• Consider each possible splitting for each tree, according to linguistic parameters extracted 
from text. 

• Find the optimal polynomial coefficents (α's and β's associated to minor phrases and accent 
groups) for each splitting. 

• Select the split which maximizes the Pearson correlation coefficient. 

The trees are grown until the Pearson correlation coefficient gain is less than a predefined 
threshold. The number of elements in each leaf is bounded to be superior than a predefined 
threshold (in our experiments, this threshold is 40), in order to prevent a weak modeling of cluster 
due to small data size. 

The linguistic features used to predict minor phrases are: sentence type (declarative, interrogative 
or exclamative), number of minor phrase in the sentence, position of the minor phrase in the 
sentence, number of accent groups in the minor phrase, number of words in the minor phrase and 
number of syllables in the minor phrase. 
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The linguistic features used to predict accent groups are: sentence type (declarative, interrogative or 
exclamative), number of minor phrase in the sentence, position of the minor phrase in the sentence, 
number of accent groups in the minor phrase, number of words in the minor phrase, number of 
syllables in the minor phrase, number of following accent groups, number of accent groups in the 
sentence, number of syllables in the accent group and position of the accent group in the minor 
phrase. 

The JEMA has a drawback that does not allow the definition of continuity constraints, because of 
the global nature of the problem. In the case of English, accent groups are defined as a sub-
sequence of the sequence of syllables contained in a minor phrase, such that the first syllable is 
accented and the remaining syllables - if any - not accented [Spr98]. As a consequence, 
discontinuities in the fundamental frequency contour can be produced in an accent group boundary 
inside a word. This problem is overcome using a smoothing function in the boundaries of accent 
groups. This smoothing function performs a linear interpolation in the middle of the discontinuity.  

Fujisaki intonation model 

The Fujisaki’s intonation model (Fujisaki et al. [Fuj84]) is based on a physical model of the 
fundamental frequency production system [Fuj00]. It is represented by two second-order filters. 
One filter is excited with pulses, and the other with deltas. The latter are related to phrase 
commands and pulses are related to accent commands. A DC value (Fb) is added to the output of 
these filters. A scheme is shown in Figure 6.7. 

 

Figure 6.7: Fujisaki’s model scheme. 

Two-stage method 

In our first experiments we used the classical two-stage approach for Fujisaki intonation modeling 
training. In this way, we obtain a base-line to compare JEMA approach. 

In the first stage, command parameters are extracted sentence by sentence yielding optimal 
parameters for each contour of the training set. Next, the resulting parameters are used to train 
classification trees based on vector clustering. The main characteristic of the extraction procedure 
is the application of strong linguistic constraints: 

• Each minor phrase is modeled by one phrase command. The phrase command can only 
appear within a window of 200ms centered at the beginning of the minor phrase. 

• The number of accent commands inside an accent group is limited to one. 

Each command is represented as one vector of parameters: [AP,T0] for phrase commands and 
[Aa,T1,T2] for accent commands. In the command prediction stage, a clustering of command 
parameter vectors is performed using regression trees. One of the trees is related to accent groups 
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(accent commands) and the other to minor phrases (phrase commands). The questions of these trees 
are related to the linguistic features of accent groups and minor phrases. The centroids of the 
clusters are the parameter vectors that minimize the mean distance to the other vectors of the 
cluster. In this way, possible deformations due to individual prediction of each command parameter 
are avoided.  

Some observations led to improvements of the extraction procedure presented in [Agu04]: 

• The default value α=3.0 for the phrase control mechanism was not optimal. In several 
experiments the global optimum value was found to be α =1.8 for the whole corpus. 

• The window for accent command timing extends 50 ms the accent group boundaries. This 
extension overcomes the problems of F0 peaks that extend their influence outside the 
accent group. 

Concerning command prediction, we found it is advantageous to predict accent command onset and 
offset, rather than to predict onset and duration. Compared to the results presented in [Agu04], 
these modifications resulted in better fitting accuracy as well as in better prediction performance. 
The synthesis capabilities of this method will serve as baseline for the evaluation of the new 
combined extraction and prediction algorithm. 

Joint parameter extraction and prediction algorithm 

In this section we propose a novel algorithm that applies JEMA approach to Fujisaki's intonation 
model training [Agu04d]. As in the previous method, two regression trees are grown using 
linguistic features as questions in the nodes. One tree is related to minor phrases, and the other to 
accent groups. As before, we assume that each minor phrase is modeled by one phrase command, 
and each accent group is modeled by one accent command. Thus, each leaf of the tree collects a set 
of fundamental frequency contours from the training corpus that must be approximated with 
command responses. A hill-climbing procedure is used to find the parameters that provide a global 
optimal approximation to all the fundamental frequency contours. 

Due to the superpositional nature of the intonation model, each partition of one tree affects the 
optimal solutions of the parameters of the other tree. Therefore, the optimization must be jointly 
performed for phrase and accent commands. The steps of the algorithm are: 

• Each tree (accent group tree and minor phrase tree) has an initial root node, which groups 
all the contours. An initial optimal solution is found that approximates all contours with the 
same phrase command for each minor phrase, and with the same accent command for each 
accent group. 

• All possible questions are examined in the leafs. For each question, the optimal parameters 
for phrase and accent commands are determined, and the approximation error is obtained. 
The optimization is performed using a hill-climbing algorithm. 

• The splitting questions for phrase and accent command trees are chosen. The selection 
criterion of the optimal node question is the minimization of the approximation error.  

• Then, the global optimal values for α, β and Fb are searched using a grid of values. 
• The process is iterated from the second step, until a minimum number of elements in the 

leafs is reached or the differential gain on accuracy is lower than a threshold. 

The global optimization avoids the interpolation step of the stylization process, which can cause a 
bias in the parameter extraction. Another advantage of global optimization is the consistency of the 
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parameters. Non-consistent parameters increase the dispersion, and limit the prediction capabilities 
of machine learning techniques. 

Tilt intonation model 

Review of the Tilt intonation model 

The Tilt intonation model defines intonational events which are represented by a set of curves. 
Intonational events are phrase breaks, accents, etc. The curves are piecewise and they are 
composed of a rise and a fall component. Each curve is connected with the adjacent curves by a 
line. The way the model approximates the fundamental frequency contour gives the name to Tilt 
parameters: rise, fall and connection (RFC parameters). In particular, the RFC parameters  for a Tilt 
event are (see Figure 6.8): rise amplitude (Ar), rise duration (tt), fall amplitude (Af), fall duration 
(tf), position (te) and F0 height (f0offset). 

 

Figure 6.8. RFC parameters. 

The intonation model requires detecting the Tilt events in the database, e.g.: phrase breaks events 
and accent events. This task can be performed using knowledge based rules or automatically 
derived rules. For instance, in [Dus00],  HMM are used to detect Tilt events. After this preliminary 
process, the Tilt acoustic parameters are extracted from the sentences of the database (step 1). This 
task can be performed using gradient descent techniques or the method proposed in the next 
section. 

In the second step, the linguistic information present in the sentences of the database is transformed 
into linguistic features and used for construction of the model. In this work, binary regression trees 
(CART) are used to predict the parameters of Tilt intonation events. The Tilt intonation model 
provides the mapping between linguistic features of the sentences and the parameterization of the 
fundamental frequency contour. Therefore it is possible to get linguistic features of new sentences 
and predict a suitable fundamental frequency contour. 

The two-stage approach serves as a baseline for the evaluation of the novel algorithm based on 
JEMA. 

Closed-form determination of amplitude parameters. 
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In Tilt intonation model it is not possible to obtain a closed-form solution for all the parameters of 
the model. However, it is possible to obtain the optimal solution for the amplitude parameters and 
f0offset assuming that the time instants are known. 

The optimal values of the time instants can be found using grid search or gradient descent 
techniques. The time instants remain constant during closed-form amplitude optimization, and the 
amplitude values are kept constant during time instant optimization using gradient descent 
techniques. The update loop is shown in Figure 6.9.  

We must point out that the loop that combines closed-form determination of some parameters and 
gradient descent of the other parameters has a better convergence rate. This optimization procedure 
is used both in the two-stage intonation model and in the joint approach presented in next section. 

 

Figure 6.9. Update loop. 

The closed-form formulation is obtained by minimizing the mean square error: 

 

where  is a function of all RFC parameters of each event: 

 

In order to obtain the set of linear equations we take derivatives of the error 

( ,  and  are kept constant): i
rt

i
ft i

et

 

If this formulation is applied to the two-stage method, there is one set ( , , ) for each 
event in the sentence. In the next section 

i
rA i

fA i
offsetf 0
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the system of linear equations simultaneously finds the optimal solution for all the RFC parameters 
( , , ) of the training  i

rA i
fA i

offsetf 0

corpus. Then the event i is used for all the contours which belong to the cluster i, defined by the 
machine learning technique (see the following section). 

The gradient descent algorithm consists of an update equation (6) and (7). ,  and  are 

updated while ,  and  are kept constant. 

i
rt

i
ft i

et
i
rA i

fA i
offsetf 0

 

Joint parameter extraction and prediction algorithm 

In this section we propose a novel algorithm to apply the JEMA to the Tilt intonation model. The 
goal is to estimate simultaneously the Tilt parameters and the prediction model. As stated above, 
the global optimization avoids the interpolation step of the stylization process and produces more 
consistent parameters, improving their predictability from linguistic features. 

Classification and regression trees (CART) are selected to estimate the model. The advantage is 
that they can use both discrete and continuous features. Furthermore, the representation provides 
useful information to increase the knowledge about the task. This information can be used for 
future improvements of the system. The classification tree is used to cluster the Tilt intonation 
events using questions concerning the prosodic and phonetic context of the events. Each leaf of the 
tree collects a set of fundamental frequency contours from the training corpus that must be 
approximated by the Tilt intonation parameters. The optimal parameterization is obtained using a 
combination of closed-form solution for the amplitudes and f0 offset  and a hill-climbing procedure 
for time instants, as explained above. These optimizations provide a global optimal approximation 
to all the fundamental frequency contours in the training database. 

The steps of the algorithm are: 

1. The tree has an initial root node, which has to represent all the events. The initial optimal 
solution is found that approximates all contours with the same set of Tilt acoustic 
parameters. 

2. All possible questions are examined in the leaves. For each question, the optimal Tilt 
acoustic parameters are determined and the approximation error is calculated. The 
optimization is performed using a combination of closed-form solution and hill-climbing 
algorithm. 

3. The splitting linguistic question for the tree is chosen next. The criterion for selection of 
the best linguistic question splitting the node is the minimization of the approximation 
error. 

4. The process is iterated (from 2) until a minimum number of elements in the leaves is 
reached or the differential gain on accuracy is lower than a threshold. 

Results 
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Experiments where performed using a a female voice of a Spanish corpus of 500 sentences. The 
utterances were manually segmented in demiphones, and the fundamental frequency contour was 
obtained from the laryngograph channel. The train set for the experiments was 70% of the corpus 
and the test set was 30% of the corpus. The results are shown in Table 2. 

The intonation models trained with the JEMA approach outperform two-stages approaches and 
intonation models based on hand-written rules. 

 

Method RMSE [Hz] Correlation
Piece-wise linear 20.46 0.58 
Bézier with JEMA 18.08 0.75 
Two-stages approach 21.79 0.68 
Fujisaki with JEMA 18.67 0.73 

Table 6.2: Global results. 

Other experiments were performed using an extended database with prompts recorded for a dialog 
system. The results are shown in Table 6.3. In this table we see that the three intonation models 
trained with the JEMA approach have similar performance. 

Method RMSE [Hz] Correlation
Bézier 20.9 0.76 
Fujisaki 21.2 0.76 
Tilt 23.1 0.68 

Table 6.3: Global results using extended database. 

Objective measures are the first indicators about the performance of an intonation model. However, 
in order to have a measure of acceptance by final users a listening test has been performed by 
twelve subjects. They were asked to judge the naturalness of the intonation of several sentences 
using a five point scale (1:unnatural, 5:natural). Each intonation model predicts the F0 contour of 
the test sentences. This contour is imposed to the test sentences by resynthesis using Praat.  

Table 6.4 shows the results of perceptual evaluation of naturalness for all methods. The natural 
intonation is included in the test as a reference for the evaluators and also to ensure the competence 
of the evaluators. 

 

Method RMSE 
[Hz] 

Natural 4.6 
Bézier 3.4 
Fujisaki 3.5 
Tilt 3.4 

Table 6.4: MOS for 3 different intonation models trained with JEMA. 
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The table shows that the three intonation models are performing similar with MOS scores around 
3.5. It also shows that we are far from obtaining the quality of natural contours. We believe that 
these results show that the main limitation is due to the prediction. More effort should be devoted 
to derive new features from the input text (including syntactic and semantic features) that may 
influence the intonation. 

6.3 Analysis of the input prosody 

The analysis of the prosody of the input voice is performed extracting numerical and symbolic 
representations that enable to perform the transfer of such information onto the target text and onto 
the output speech synthesis. The mapping task takes into account alignment information provided 
by the statistical spoken translation system. 

6.3.1 Symbolic representation of the input fundamental frequency contour 

The mapping of the pitch contour will be performed using a symbolic representation of the source 
contour. This symbolic representation is an abstract representation of the input contour that will be 
used to generate the output contour. 

The input fundamental frequency contour is converted to a symbolic representation using clustering 
techniques that allow creating classes of contours. In order to produce expressive speech we want 
to find information which is not related to linguistic information: this information is available 
through the target text. Therefore, the cluster has to be done using acoustic information. The 
elements to populate the clusters are F0-contours of the accent groups. After the clustering of the 
source contours and using the alignment source text – target text, each accent group of the output 
language is linked to zero, one or more source accent-groups classes. This information is used as 
input features to train an intonation model. In this way, multiple information sources are being used 
to generate the output fundamental frequency contour. We can not rely only on the linguistic 
information of the translated text or on the information obtained from the input voice. Each 
information are complementary and in some cases even contradictory. In this way, the machine 
learning technique used to infer an intonation model finds out the regularities that are more 
important to obtain a suitable predicted fundamental frequency contour. 

Some preliminary work has been done using a bilingual speech corpus, Catalan/Spanish, in the 
touristic domain. The results are promising because the features related with the input speech 
shows high relevancy. This approach needs to be validated using expressive speech and languages 
which are more different than Catalan/Spanish. 

6.3.2 Syllable and word prominence 

The detection of syllable prominence is important by several aspects. The prominent syllable 
allows disambiguating between different meanings that differ only on the stressed syllable. 
Additionally syllable prominence helps to ease the understanding of the meaning of a sentence by 
focusing the attention of the listener in a certain word. The later can also be applied to word 
prominence.  

Studies reveal that prominence is an important prosodic feature that affects cognitive load. 
Cognitive load is a measure of the degree of “mental load” that the comprehension process 
demands. The comprehension can be affected by several factors, such as the complexity of the text 
and the way it is spoken. In order to measure this cognitive load, several experiments are proposed 
by Delogu et al [Del98] such as listening difficulty test, comprehension and attention test.  
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The stress is the prosodic phenomena where a syllable is perceived as more prominent than the 
surrounding syllables of the word. The prominence of the syllable is correlated with some 
acoustical features, such as nucleus energy, midband nucleus energy (500Hz to 2000Hz), syllable 
duration lengthening [Cry90] and pitch variation. [Str97, Slu96, Wig94]  

On the other hand, accent refers to prominence given to a syllable by the use of pitch. In this sense, 
accent is distinguished from the more general term stress, which is more often used to refer to all 
sorts of prominence (including prominence resulting from increased loudness, length or changes in 
sound quality), or to refer to the effort made by the speaker in producing a stressed syl lable 
[Roa02].  

These facts are used by Tamburini [Tam04] to refer to the two components of the proposed 
prominence index: accent index (en300-2200.dur) and stress index (enov.(Aevent.Devent)). Aevent 
and Devent refer to the amplitude and duration of the Tilt events used by Tamburini to characterize 
the pitch contour. [Tay00]. 

In our work we explore the use of the acoustic parameters proposed in the literature to perform 
syllable and word prominence detection. The accuracy for word prominence detection is 85, 7% (F 
= 65%). This result is obtained for the speaker F1A of the Boston University Radio News Corpus 
[Ost95]. The experiments performed with the F1B speech corpus of Boston University Radio News 
Corpus show an accuracy of prominent syllable detection of 92.27%. 

In our work we explore unsupervised approaches. They perform the annotation of the source 
waveform using indexes that merge input acoustic features. These indexes correlate its value with 
the strength of the existence of a given prosodic tag. Then, thresholds are used to take the decision 
about the presence or the absence of the prosodic label. This approach has the advantage of the 
simplicity: no training data is needed. However, the accuracy of such approaches is inferior than 
supervised approaches because of the lack of complementary sources of information that may 
improve the classification performance (e.g.: linguistic information). 
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