
VOICE CONVERSION MATLAB TOOLBOX

David S̈undermann

Siemens Corporate Technology, Munich, Germany
Technical University of Catalonia, Barcelona, Spain

david@suendermann.com

ABSTRACT

This paper documents function and properties of the Voice
Conversion Matlab Toolbox (version 2007-02-18). It contains
information on system requirements, an overview about the
modules included, shows examples of applying the toolbox
to voice conversion based on vocal tract length normalization
(VTLN) and linear transformation in a step-by-step manner,
and gives details about the parameter settings.

Index Terms— voice conversion, Matlab, toolbox

1. INTRODUCTION

Voice conversion is the transformation of the voice character-
istics of a source towards a target voice [1].

The Voice Conversion Matlab Toolbox described in this
paper is a collection of Matlab scripts that enables the userto
rapidly design, modify, and test voice conversion algorithms
based on

• VTLN in frequency domain [2] or time domain [3],

• linear transformation [4].

It contains several signal processing tools, which are the fun-
damentals of the aforementioned voice conversion techniques,
such as

• a pitch tracker,

• a voicing detector,

• a dynamic programming module,

• dynamic time and frequency warping algorithms,

• a program for monitoring and manually modifying pitch
marks,

• feature conversion tools for linear predictive coeffi-
cients, line spectral frequencies, (mel frequency) cep-
stral coefficients, residual coefficients according to Ye
and Young [5] and S̈undermann [6], and sinusoidal co-
efficients,

• interpolation tools for linear, cubic spline, mel-scale,
and two-dimensional interpolation,

• Gaussian mixture modeling,

• hashing,

• k-means clustering,

• least squares fitting,

• linear transformation,

• VTLN,

• objective error measures as line spectral distortion, sig-
nal-to-noise ratio, residual distance [6], and mahalano-
bis distance,

• pitch-synchronous overlap and add,

• residual prediction,

• unit selection,

• vector smoothing based on normal distribitions (also
two-dimensional),

• text-independent speech alignment.

This paper does not intend to discuss all tools contained in
this toolbox (there are more than 200), since they are docu-
mented in the header of the respective source files, which can
be easily accessed by typing

help tool

at the Matlab prompt, wheretool has to be replaced by the
respective tool’s name such asvtln .

2. SYSTEM REQUIREMENTS

The toolbox was tested on Matlab version 6.5 (Release 13)
on a Windows XP platform and on Matlab version 6.1 (Re-
lease 12.1) on a Linux platform1. Both systems had the signal

1Most of the delivered scripts are in DOS-formatted ASCII code. If used
under Linux, they should be converted using thedos2unix command to
avoid data format errors.

processing as well as the statistics toolbox installed, butthe
author tried to avoid using them to make the toolbox applica-
ble to a wider range of systems.

In addition to the Matlab functionality of the toolbox, there
are a few algorithms based on other environments or pro-
grams such as

• Perl version 5.8,

• the author’s Language Resources Generation Tool-
box [7],

• Praat [8] version 4.4,

• Cygwin version 2.510.

3. VTLN-BASED VOICE CONVERSION

3.1. Pitch Tracking and Voicing Detection

The speech processing of this toolbox is mainly based on the
pitch-synchronous paradigm, which requires the speech data
to be pitch-tracked. The pitch tracker described in [9] comes
along with the toolbox, however, according to the author’s ex-
perience and a recent pitch tracker evaluation [10], it achieves
a rather poor performance leading to a considerable number
of artifacts. The Praat program produces much more reliable
pitch marks and is to be used as standard pitch tracker in the
following.

In the directory of the Matlab toolbox (in the following
referred to astoolbox directory), where we expect all Matlab
and other commands to be executed (unless otherwise spec-
ified), is a folderdata that contains a number of example
speech files:f.01.wav to f.10.wav of a female voice and
m.01.wav to m.10.wav of a male voice. We move to this
folder by typing at the Cygwin prompt

cd data

Now, the list of allwav files in the current folder is taken,
a Praat script is generated and finally executed. Here, scripts
from the Language Generation Toolbox, and Praat’s command
line versionpraatcon 2 are used3.

ls * .wav | replaceStr.pl ˆ ’bash ...

..\/wav2pp.bash ’ > wav2pp.full.bash

bash wav2pp.full.bash > wav2pp.praat

praatcon wav2pp.praat

The result arepp, i.e. PointProcess files, the Praat format for
pitch marks, one for eachwav file available.

So far, the pitch marks are only determined in voiced sig-
nal parts. Since required for the following speech processing,

2Under Linux, Praat’s command line version ispraat .
3The character sequence ’... ’ is to indicate that the line is continued.

also (pseudo) pitch marks for the unvoiced signal portions are
generated by applying a pitch mark interpolation according
to [11]. In doing so, the voicing information is to be pre-
served, as it will play an important role for the voice conver-
sion. The internal pitch mark format is that according to [9],
which stores a vector of the pitch period lengths in numbers
of samples, i.e. integer numbers, into apmfile. Furthermore,
the respective voicing information is stored into a parallel v

(voicing) file. At first, the header of thepp files are removed
resulting in files of the typepit

ls * .pp | replaceStr.pl ’.pp$’ > stem.txt

cat stem.txt | replaceStr.pl ˆ ...

’tail +7 ’ | paste.pl ’.pp > ’ ’’ | ...

paste.pl stem.txt ’’ | ...

paste.pl ’.pit’ ’’ > pp2pit.bash

bash pp2pit.bash

Now, a Matlab batch processing script is generated that trans-
forms thepit file to thepmtype and also produces thev files

cat stem.txt | ...

replaceStr.pl ˆ "pit2pm(’data\/" | ...

paste.pl ".pit’, ’data/" ’’ | ...

paste.pl stem.txt ’’ | ...

paste.pl ".wav’, ’data/" ’’ | ...

paste.pl stem.txt ’’ | ...

paste.pl ".pm’, ’data/" ’’ | ...

paste.pl stem.txt ’’ | ...

paste.pl ".v’);" ’’ > ../tmp_pit2pm.m 4

Now, we type at the Matlab prompt (in the toolbox directory)

tmp_pit2pm

producing the desired pitch mark and voicing files.

3.2. Estimating the Warping Factor and Fundamental
Frequency Ratio

According to the definition of frequency as well as time do-
main VTLN as given by [12], above all, two parameters are
required for the VTLN-based voice conversion: the warp-
ing factoralpha and the fundamental frequency ratiorho ,
cf. [13]. This section shows, how these parameters are esti-
mated on the training data.

To begin with, so called file list files
(cf. fileListFile2file) are generated that contain the
names ofwav, pm, andv files by typing at the Cygwin prompt
(in the toolbox directory)

4Usually, all working files, data, temporary files, etc. shouldbe located in
thedata directory. Exceptions are the temporary files generated by several
Matlab tools (cf.getRandFile andclrTemp). All other files that for some
reasons have to be (temporarily) located in the toolbox directory, should be
preceded by the prefixtmpmto make them easily detectable.

ls data/f * .wav > data/f.wav.l

ls data/f * .pm > data/f.pm.l

ls data/f * .v > data/f.v.l

ls data/m * .wav > data/m.wav.l

ls data/m * .pm > data/m.pm.l

ls data/m * .v > data/m.v.l

Now, the announced parameters are trained on the training
data, for instance for female-to-male conversion, typing at the
Matlab prompt

[alpha, rho] = getWarpingFactor(...

’data/f.wav.l’, ’data/f.pm.l’, ...

’data/m.wav.l’, ’data/m.pm.l’)

3.3. Frequency Domain and Time Domain VTLN

Now, the objective is to convert a source speech file by means
of the estimated warping parameters towards the target voice.
This is done by means of the Matlab command

vtlnBasedVc(’data/f.01.wav’, ...

’data/f.01.pm’, ’data/f.01.v’, ...

’data/outputVtln.wav’, alpha, rho, ’fdvtln’)

storing the converted speech asdata/outputVtln.wav . At
this point, and also in the following, we apply the trained pa-
rameters to files that also served as training material. This
is only for reasons of convenience. If the reader has doubts
of the applicability of the trained parameters to unseen data,
he is invited to split the data into training and testing databy
himself.

The above command line is the frequency domain VTLN
version. For the time domain version, replace the last argu-
ment by’tdvtln’ .

It shall be mentioned that the parameter estimation dis-
cussed in Section 3.2 viagetWarpingFactor is based on
frequency domain VTLN. The particular warping function
can be defined as an additional argument (consulthelp

getWarpingFactor), default is the symmetric piece-wise
function according to [14]. Since the warping factor strongly
depends on the warping function used, this function must also
be specified as additional argument tovtlnBasedVc , if dif-
ferent from the default. When time domain VTLN is applied
(which usually produces a superior speech quality), there is
no choice as for the warping function, since it corresponds to
the symmetric piece-wise function by definition; for a proof,
see [3].

In a recent study [12], the author showed that by altering
the mentioned parameters,alpha andrho , he is able to pro-
duce several (at least five) well-distinguishable voices based
on one source voice. This is to invite the user of this toolbox
to manually play with these parameters to achieve the best

desired effect. It shall also be mentioned that, in terms of the
objective criterion used for training (cf. [2]), the automatically
determined parameter settings might be optimal; perceptively,
however, this may not be the case.

4. VOICE CONVERSION BASED ON LINEAR
TRANSFORMATION

The linear transformation task is much more complex than
the VTLN-based one. Therefore and, in particular, due to the
number of parameters involved, we make use of a config file,
that is located in thedata folder and is calledconfig.txt .
For the syntax of this config file consulthelp

getParameter , a function that reads parameters out of a
config file.

For the parameters that will be used by the following op-
erations, have a look at Table 1.

4.1. Parameter Training

The training is performed by means of the command

trainVc(’data/config.txt’)

All trained parameters are stored to thevcParamFile , cf.
Table 1. One can always access the contents of this file by
usingfile2x , e.g. by typing

vcParam = file2x(getParameter(...

’vcParamFile’, ’data/config.txt’))

In particular, the fieldvcParam.general is of interest, since
it contains all parameters specified in the config file and other
ones derived in the training.

4.2. Conversion

The conversion is performed using the command

vc(’data/config.txt’)

Again, all necessary settings have to be applied to the con-
fig file.

5. COPYRIGHT

All scripts of the Voice Conversion Matlab Toolbox are writ-
ten by the author in the years 2003 to 2007. Table 2 contains
the exceptions.

6. REFERENCES

[1] D. Sündermann, “Voice Conversion: State-of-the-Art
and Future Work,” inProc. of the DAGA, Munich, Ger-
many, 2005.

[2] D. Sündermann, H. Ney, and H. Ḧoge, “VTLN-Based
Cross-Language Voice Conversion,” inProc. of the
ASRU, Virgin Islands, USA, 2003.

[3] D. Sündermann, A. Bonafonte, H. Ney, and H. Höge,
“Time Domain Vocal Tract Length Normalization,” in
Proc. of the ISSPIT, Rome, Italy, 2004.

[4] Y. Stylianou, O. Capṕe, and E. Moulines, “Statistical
Methods for Voice Quality Transformation,” inProc. of
the Eurospeech, Madrid, Spain, 1995.

[5] H. Ye and S. Young, “High Quality Voice Morphing,”
in Proc. of the ICASSP, Montreal, Canada, 2004.

[6] D. Sündermann, A. Bonafonte, H. Ney, and H. Höge, “A
Study on Residual Prediction Techniques for Voice Con-
version,” in Proc. of the ICASSP, Philadelphia, USA,
2005.

[7] D. Sündermann, “A Language Resources Generation
Toolbox for Speech Synthesis,” inProc. of the AST,
Maribor, Slovenia, 2004.

[8] P. Boersma, “Praat, a System for Doing Phonetics by
Computer,”Glot International, vol. 5, no. 9/10, 2001.

[9] V. Goncharoff and P. Gries, “An Algorithm for Accu-
rately Marking Pitch Pulses in Speech Signals,” inProc.
of the SIP, Las Vegas, USA, 1998.

[10] B. Kotnik, H. Höge, and Z. Kacic, “Evaluation of Pitch
Detection Algorithms in Adverse Conditions,” inProc.
of the Speech Prosody, Dresden, Germany, 2006.

[11] A. Black and K. Lenzo, Building Synthetic Voices,
Carnegie Mellon University, Pittsburgh, USA, 2003.

[12] D. Sündermann, G. Strecha, A. Bonafonte, H. Höge, and
H. Ney, “Evaluation of VTLN-Based Voice Conversion
for Embedded Speech Synthesis,” inProc. of the Inter-
speech, Lisbon, Portugal, 2005.

[13] D. Sündermann, Text-Independent Voice Conversion
(Draft), Ph.D. thesis, Bundeswehr University Munich,
Munich, Germany, 2006.

[14] L. Uebel and P. Woodland, “An Investigation into Vo-
cal Tract Length Normalization,” inProc. of the Eu-
rospeech, Budapest, Hungary, 1999.

[15] A. Kain and M. Macon, “Spectral Voice Conversion
for Text-to-Speech Synthesis,” inProc. of the ICASSP,
Seattle, USA, 1998.

[16] D. Sündermann, H. Ḧoge, A. Bonafonte, H. Ney,
A. Black, and S. Narayanan, “Text-Independent Voice
Conversion Based on Unit Selection,” inProc. of the
ICASSP, Toulouse, France, 2006.

[17] D. Sündermann, H. Ḧoge, A. Bonafonte, H. Ney,
and J. Hirschberg, “Text-Independent Cross-Language
Voice Conversion,” inProc. of the Interspeech, Pitts-
burgh, USA, 2006.

[18] A. Kain, High Resolution Voice Transformation, Ph.D.
thesis, Oregon Health and Science University, Portland,
USA, 2001.

[19] D. Sündermann, H. Ḧoge, A. Bonafonte, H. Ney, and
A. Black, “Residual Prediction Based on Unit Selec-
tion,” in Proc. of the ASRU, San Juan, Puerto Rico,
2005.

[20] D. Sündermann, H. Ḧoge, and T. Fingscheidt, “Break-
ing a Paradox: Applying VTLN to Residuals,” inProc.
of the ITG, Kiel, Germany, 2006.

[21] J. Chen and A. Gersho, “Real-Time Vector APC Speech
Coding at 4800 bps with Adaptive Postfiltering,” in
Proc. of the ICASSP, Dallas, USA, 1987.

parameter description example
general
vcParamFile contains all parameters derived in training data/vc.mat

vcParamNarrow if the memory-consuming parts ofvcParamFile can be re-
moved; this is recommendable, ifresidualPrediction is
switched off

0

training
normPitch fn in Hz, cf. [13] 100.0

sourceWavFileListFile wav andpmtraining file list files of source and target data/f.wav.l

sourcePmFileListFile data/f.pm.l

targetWavFileListFile data/m.wav.l

targetPmFileListFile data/m.pm.l

linear transformation
linearTransformationMode the type of linear transformation – either according to [4]

(stylianou) or to [15] (kain)
stylianou

covarianceType type of covariance matrices; for the possible types, cf.
trainGmm

diag

featNum dimensionality of features (D according to [13]) 32

mixNum number of Gaussian mixture densities 4

speech alignment, for details cf. [16]
twType speech alignment type;dtw for dynamic time warping ortw for

text-independent alignment based on unit selection
dtw

twDp† if dynamic programming (DP) is to be applied or a context-free
minimization (i.e.,w = 1 in the unit selection formula in [13]),
which is much faster

1

twFeatNum † dimensionality of features used for unit-selection-basedalign-
ment

16

twAlpha † w according to [13] 0.3

twDeltaM † cf. twUnitSelectionCost 1

twNBest † cf. fullDp 3

parallelization; since text-independent speech alignment can be very time-consuming (see [17]), it should be parallelized
twParallelFileNum the index of the file to be processed in the training file

list file – the resulting frame index sequence is written to
twParallelIndexFile , and then the program stops. If all
index files of all parallel computations have been generated,
they have to be concatenated in their correct order as given
by the file list files (e.g. by means of the Cygwin command
cat) and written to an index file containing the alignment
information of the whole corpus. Now, the config file en-
try twParallelIndexFile has to be adapted accordingly,
and the parametertwParallelFileNum has to be set to-1 ,
which means that the alignment is read from this file instead
of computing it. If no parallelization is to be carried out, set
twParallelFileNum to 0.

0

twParallelIndexFile see description oftwParallelFileNum data/index.txt

parameter description example

conversion
lsfSmoothingOrder The linearly transformed line spectral frequencies (LSFs) are

smoothed by means ofsmoothing using this smoothing or-
der; for a justification see [18].

3.0

inputWavFile inputwav, pm, v and outputwav files or file list files data/f.01.wav
inputPmFile data/f.01.pm
inputVoicingFile data/f.01.v
outputWavFile data/output.wav
residual prediction
residualPrediction if residual prediction is to be applied 0
linearTransformation if linear transformation is to be applied; if not, VTLN-based

voice conversion is performed
1

nResidual ‡ the number of residuals to be considered. A smaller number
can significantly accelerate the voice conversion. PutInf to
consider all residuals seen in training.

Inf

useInputPhase ‡ if the source phase spectra are to be copied to the target 0
alpha1 ‡

w1 according to [19] (w2 = 1− ω1, w3 = 0) 0.0
suendermannSmoothOrder ‡ residual smoothing strength,σ0 according to [13] 2.0
VTLN
alphaVoiced ⋆ VTLN warping factor for the residuals of voiced signal portions

(referred to asalpha in Section 3.2), cf. [20]
1.6

alphaUnvoiced VTLN warping factor for unvoiced signal portions; should be
around 1.0 and only be varied, if the unvoiced sounds of both
involved speakers strongly differ

1.0

synthesis
unvoicedAmp amplification factor of unvoiced signal portions; this can be of

interest to adapt the gains of voiced and unvoiced signal por-
tions, which are handled seperately in the conversion process
and also behave differently from speaker to speaker

1.0

lengthRatio ⋆ fundamental frequency ratio (referred to asrho in Section 3.2) 0.6
perceptual if the perceptual filter according to [21] is to be used 1

Table 1. Parameters of the config file.
⋆ These parameters are estimated in training. Consequently, they should only be explicitly given in the config file, if the estimated

values are to be ignored and replaced.
† Only applicable iftwType is tw .
‡ Only applicable ifresidualPrediction is 1.

file author reference date
consist.m I. Nabney http://www.ncrg.aston.ac.uk/netlab/ 1996–2001
dist2.m
distchck.m The MathWorks, Inc. http://www.mathworks.com/ 1993–2002
dp.m ⋆ D. Ellis dpwe@ee.columbia.edu 2003-03-15
dtw.m ⋆

dumpmemmex.dll The MathWorks, Inc. http://www.mathworks.com/ 1993–2006
find_pmarks.m ⋆ W. Goncharoff goncharo@ece.uic.edu 1997-12-06
frq2mel.m M. Brookes mike.brookes@imperial.ac.uk 1998-04-03
getMfccfilterParams.m ⋆ Interval Research Corp. http://www.interval.com/ 1998
gmmactiv.m ⋆ I. Nabney http://www.ncrg.aston.ac.uk/netlab/ 1996–2001
gmm.m
gmmactive.m ⋆

gmmem.m⋆

gmminit.m ⋆

gmmpost.m
gmmprob.m
hashadd.m D. Mochihashi daichi.mochihashi@atr.jp 2004
hashinit.m
hashval.m
inpoly.m D. Doolin doolin@ce.berkeley.edu 1999-03-26
kmeans2.m ⋆ I. Nabney http://www.ncrg.aston.ac.uk/netlab/ 1996–2001
mel2frq.m M. Brookes mike.brookes@imperial.ac.uk 1998-04-03
mfcc2spec.m ⋆ Interval Research Corp. http://www.interval.com/ 1998
mvnpdf.m The MathWorks, Inc. http://www.mathworks.com/ 1993–2002
normpdf.m
simmx.m D. Ellis dpwe@ee.columbia.edu 2003-03-15
spec2mfcc.m ⋆ Interval Research Corp. http://www.interval.com/ 1998

Table 2. Copyright notes.
⋆ modified by the author of this paper

