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Abstract 

Acoustic models for state-of-the-art DNN-based speech 

recognition systems are typically trained using at least several 

hundred hours of task-specific training data. However, this 

amount of training data is not always available for some 

applications. In this paper, we investigate how to use an adult 

speech corpus to improve DNN-based automatic speech 

recognition for non-native children's speech. Although there are 

many acoustic and linguistic mismatches between the speech of 

adults and children, adult speech can still be used to boost the 

performance of a speech recognizer for children using acoustic 

modeling techniques based on the DNN framework. The 

experimental results show that the best recognition performance 

can be achieved by combining children's training data with adult 

training data of approximately the same size and initializing the 

DNN with the weights obtained by pre-training using the full 

training set of the adult corpus. This system can outperform the 

baseline system trained on only children's speech with an 

overall relative WER reduction of 11.9%. Among the three 

speaking tasks studied, the picture narration task shows the 

largest gain with a WER reduction from 24.6 % to 20.1%. 
 

Index Terms: speech recognition, non-native child 

spontaneous speech, DNN and i-vector 

1. Introduction 

Globalization has been accompanied by a significantly growing 

demand for English language proficiency and learning English 

as a foreign language in primary school is mandatory in many 

European countries. In many Asian countries, children also 

begin learning English in the primary grades. This large and 

growing population of young English learners has increased the 

demand for automated speech processing technology to 

facilitate the scoring of their spoken responses. Employing 

automated speech scoring for this population would both reduce 

the burden on the teachers and also provide a mechanism for 

real-time feedback to young learners when teachers are not 

available. 

Automated assessment of several aspects of spoken 

language proficiency, including vocabulary, grammar, content 

appropriateness, and discourse coherence, depends heavily on 

how accurately the input speech can be recognized. While state-

of-the-art acoustic models based on deep neural networks have 

significantly improved recognition performance of native 

speech, accurate recognition results are still challenging to 

obtain when the input is non-native spontaneous speech. This is 

due, in large part, to the fact that non-native spoken responses 

tend to contain substantially higher amounts of pronunciation 

errors, disfluencies, ungrammatical phrases, etc. [1].  

Recognizing non-native children's speech is even more 

challenging. Conventional speech recognition systems that are 

modelled on adult data typically do not perform well on 

children’s speech [2]. Many acoustic and linguistic variations 

are observed between adult speech and children's speech. 

Acoustically, shorter vocal tracts and smaller vocal folds in 

children lead to higher fundamental frequencies and formant 

frequencies than for adults [3-5].  In addition, children’s 

speaking rates tend to be slower and more variable overall due 

to the fact that their articulators have not fully developed yet 

[6]. Linguistically, children's choices of vocabulary and syntax 

tend to differ from adult patterns, and children may use greater 

amounts of imaginative words and ungrammatical phrases [7]. 

The differences between non-native speech produced by adults 

and children lies more in the acoustic aspects than the linguistic 

aspects since similar linguistic errors tend to exist in both non-

native adult speech and children's. 

In this paper, we explore how to build an automatic speech 

recognizer for non-native children's speech using a corpus of 

children's speech of moderate size assisted by a large corpus of 

adult speech.  

2. Previous Research 

Many approaches have been tried to improve automatic speech 

recognition for children's speech. Most approaches have 

addressed the acoustic differences between adult and children's 

speech by vocal tract length normalization (VTLN), which aims 

to compensate for the fact that speakers have vocal tracts of 

different sizes. It is generally implemented by warping the 

frequency axis of one spectrum by expanding or compressing 

in different regions to minimize the distance to a canonical 

spectrum, typically towards a global average vocal tract length 

[8]. This warping is usually employed before both training and 

recognition. The warping functions can be linear, piecewise 

linear, bilinear, or nonlinear, and the corresponding warping 

factor, generally a single scalar parameter for each speaker, is 

usually estimated by a small amount of data. VTLN is one of 

the easiest ways of doing fast speaker adaptation and its 

effectiveness for improving recognition performance of 

children's speech has been reported in [7, 9,10]. However, when 

a DNN-HMM framework is used for acoustic modeling instead 

of a GMM-HMM, the gains obtained by VTLN have been much 

less or even nonexistent for deeper neural networks. Studied 

have demonstrated that the features automatically extracted by 

DNNs are far superior to those produced by feature-engineering 

techniques generally used in GMM-based acoustic modeling, 

such as VTLN [11]. 

Other commonly used approaches for speaker adaption 

apply linear transformations [12], either by transforming the 

parameters of a trained model towards the test speakers, e.g., 

maximum likelihood linear regression (MLLR), or by 



transforming the features of test speakers towards the trained 

models, e.g., feature-space MLLR (fMLLR).  Some studies 

have documented that this approach is very effective for 

adapting an existing adult GMM-based LVCSR system to 

produce a child-specific system [5,7]. However, the idea of 

GMM adaptation (MLLR) is not applicable for a DNN in the 

sense of nonlinear transformation for layer connections and 

discriminative training with back-propagation (BP) rather than 

maximum likelihood (ML) training with expectation-

maximization (EM). It has also been demonstrated that the 

improvement from using CMLLR (constrained MLLR) adapted 

features is minimal when DNN acoustic models are used instead 

of GMMs [13]. 

Recently, with the significantly improved performance 

obtained by using deep learning to train acoustic models for 

recognizing adult speech, several studies have also show the 

power of DNNs for acoustic modeling of children's speech [14-

16]. In [14], a comparison is made between GMM-HMM and 

DNN-HMM systems using various amounts of training data for 

recognizing non-native children's speech for spoken language 

assessment applications. This study found that the DNN models 

outperform the GMM models when enough training data was 

available to train the DNN parameters reliably, and it 

demonstrated that the improvement in recognition performance 

of the DNN models compared to the GMM models increased 

monotonically with more training data. In [16], the best results 

for children's speech recognition were obtained by training on a 

large amount of data, which better matched children’s speech, 

aided by a neural network classifier. Many acoustic modeling 

techniques for improving children’s speech recognition shown 

in the literature, e.g., spectral smooth, VTLN and using pitch 

features, are found not to be effective, given their voice search 

task with trained acoustic model by 1.9 million utterances [16]. . 

3. Data and Task 

Two corpora of non-native spontaneous English drawn from the 

domain of spoken English proficiency assessment are used in 

this study. The first corpus contains non-native children's 

speech drawn from a pilot version of the TOEFL Junior 

Comprehensive assessment administered in late-2011 [17]. The 

TOEFL Junior Comprehensive is a computer-based test 

containing four sections: Reading Comprehension, Listening 

Comprehension, Speaking, and Writing. It is intended for 

middle school students around the ages of 11 - 15, and is 

designed to assess a student’s English communication skills 

through a variety of tasks. This study focuses on the Speaking 

section, which contains the following three task types eliciting 

spoken responses: 

 Read Aloud (RA): the test taker reads a paragraph 

(containing approximately 90 - 100 words) presented on 

the screen out loud  

 Picture Narration (PN): the test taker is shown six images 

that depict a sequence of events and is asked to narrate the 

story in the pictures 

 Listen Speak (LS): the test taker listens to an audio 

stimulus (approximately 2 minutes in duration) containing 

information about a non-academic topic (for example, a 

homework assignment) or an academic topic (for example, 

the life cycle of frogs) and provides a spoken response 

containing information about specific facts in the stimulus 

The responses to each of three task types are approximately 

60 seconds in duration, and they are scored on a scale of 1 - 4 

by expert human raters. Each speaker provided 5 responses: one 

RA, one PN, and three LS. This corpus is hereafter referred to 

as the children's corpus and mainly used to build a speech 

recognizer for children. 

The second corpus is drawn from a large-scale standardized 

spoken language proficiency test, TOEFL iBT, which measures 

a non-native speaker's ability to use and understand English at 

the university level. The speaking tasks in this test elicit 

monologs of 45 or 60 seconds in duration; example tasks 

include expressing an opinion on a familiar topic or 

summarizing information presented in a lecture. Each speaker 

provides 6 responses. Human experts were recruited to rate the 

responses using holistic rubrics on a 1-4 scale that cover the 

following three aspects of speaking proficiency: delivery, 

language usage and topic development. This corpus is hereafter 

referred to as the adult corpus and is used to improve the 

performance of speech recognizer for children. 

The children's corpus includes responses from 1,685 test 

takers from over 10 native language backgrounds. It is divided 

into the following three sets (with no speaker overlap) for the 

current study: ASR training (AsrTrain), ASR development 

(AsrDev) and ASR evaluation (AsrEval). The corresponding 

number of speakers, number of responses, and hours of speech 

are presented in Table 1. 

Table 1. Number of speakers, number of responses, and 

duration of speech for each data partition in the children's 

corpus. 

 AsrTrain AsrDev AsrEval 

#Speakers 1,625 30 30 
#Responses 8,125 150 150 
Duration (hours) 137.2 2.5 2.5 

 

The adult corpus contains over 800 hours of non-native 

spontaneous speech covering over 100 native languages across 

8,900 speakers. Table 2 presents the number of speakers, 

number of responses, and duration of speech for the three 

partitions, AsrTrain, AsrDev and AsrEval in the adult corpus; 

there is no speaker overlap across the three partitions. 

Table 2. Number of speakers, number of responses and duration 

of speech for each data partition in the adult corpus. 

 AsrTrain AsrDev AsrEval 

# Speakers 8,700 100 100 
# Responses 

Responses 

52,200 600 600 
Duration (hours) 819 9.4 9.4 

4. Speech Recognizer for Children 

As discussed in the Section 2, DNN models in combination with 

large amounts of training data can significantly improve the 

performance of a speech recognition system. However, large 

corpora are not always available for deployed applications. In 

this study, we explore how to build an automatic recognizer for 

non-native children's speech with a corpus of moderate size 

containing approximately 100 hours of speech.   

4.1. DNN-based Speech Recognizer with I-vectors 

The spoken responses contain many non-scorable cases, e.g., 

non-English responses or response with large amounts of 

background noise. These responses were excluded from the 

AsrTrain set for training. After these exclusions, a total of 7,594 

responses from the TOEFL Junior Comprehensive assessment 

were used to train a baseline speech recognizer for non-native 

English produced by children. 



A GMM-HMM is first trained to obtain senones (tied tri-

phone states) and the corresponding aligned frames for DNN 

training. The input feature vectors used to train the GMM-

HMM contain 13-dimensional MFCCs and their first and 

second derivatives. Contextual dependent phones, tri-phones, 

are modeled by 3-state HMMs and the pdf of each state is 

represented by a mixture of 8 Gaussian components. The splices 

of 9 frames (4 on each side of the current frame) are projected 

down to 40-dimensional vectors by linear discriminant analysis 

(LDA), together with maximum likelihood linear transform 

(MLLT), and then used to train the GMM-HMM using ML. To 

alleviate the mismatch between the training criterion and 

performance metrics, the parameters of the GMM-HMM are 

then refined by discriminative maximum mutual information 

(MMI) training. 

An i-vector is a popular auxiliary feature for improving 

DNN-based ASR. It is a compact representation of a speech 

utterance that encapsulates speaker characteristics in a low-

dimensional subspace [18, 19] and has become the state-of-the-

art approach in the field of speaker recognition. Using i-vectors 

is also a promising approach to speaker adaptation for speech 

recognition and appending the i-vector to frame-level acoustic 

features has been reported to improve the performance of ASR 

based on DNN acoustic modeling [20-22]. The AsrTrain 

partition of the children's corpus is also used to train the 

following hyper-parameters: GMM-UBM and T-matrix for i-

vector extraction.  

The features used to train the DNN are concatenated MFCC 

features and i-vector features. The MFCC features have the 

same dimensions as those used in GMM-HMM, while the i-

vector features have 100 dimensions extracted from each 

response and are appended to the frame-level MFCC features. 

The input features stacked over a 15 frame window (7 frames 

to either side of the center frame for which the prediction is 

made) are used as the input layer of DNN. The output layer of 

the DNN has 3,957 nodes, the senones of the HMM obtained by 

decision-tree based clustering. The input and output feature 

pairs are obtained by frame alignment for senones with the 

GMM-HMM. The DNN has 7 hidden layers, and each layer 

contains 1024 nodes. The sigmoid activation function is used 

for all hidden layers. All the parameters of the DNN are first 

initialized by “layer-wise BP” pre-training [11], then trained by 

optimizing the cross-entropy function through back-

propagation (BP), and finally refined by sequence-

discriminative training, state-level minimum Bayes risk 

(sMBR).  

The CMU pronunciation dictionary [23] is used to build a 

grapheme-to-phoneme (G2P) converter by data-driven joint-

sequence models [24]. After text normalization for the 

transcriptions, we use G2P to automatically generate 

pronunciations for the words not contained in the CMU 

dictionary in the transcription and combine them with the CMU 

dictionary to create a new pronunciation dictionary. A trigram 

LM is trained from the transcriptions of the AsrTrain set using 

the IRSTLM toolkit [25]. 

4.2. Improving Speech Recognition for Children 

using Adult Data 

Despite the large number of differences between children's 

speech and adult speech, there are still many acoustical and 

linguistic commonalities between the two varieties of speech. 

In addition, a DNN can represent high-level abstractions of 

complex data sets through multiple non-linear transformation 

[26]. In this study, we investigate whether using an adult corpus 

can improve the performance of DNN-based speech recognition 

for children. Our motivation is that the features extracted or 

transformed by the DNN can share the speech commonalities 

between children and adults and may potentially compensate 

for (or normalize) the mismatch between the two varieties. The 

following three approaches are tested to improve speech 

recognition for children using adult data. 

A. Speaker adaption of DNN with i-vectors 

We trained a DNN-based ASR system using a fairly large 

corpus of non-native English adult speech, as described in 

Section 4.1, and made it self-adaptive to a test speaker in the 

children's corpus by i-vector-based speaker adaptation. This 

approach has been shown to be very effective for cross-task 

adaptation, from monologic speech to dialogic speech [27]. 

To compensate for the mismatch in content between the 

children's and adult corpora, linear interpolation is used to 

combine the two LMs, which are trigram LMs trained from the 

transcriptions of the AsrTrain sets of the adult and children's 

corpora separately.  The interpolation weight was optimized by 

minimizing the WER on the AsrDev set in the child corpus. The 

interpolated (combined) LM is finally represented as a finite 

state transducer (FST) for decoding using weighted FSTs 

(WFSTs).  

B. Combining children's and adult training data 

We added utterances from the AsrTrain partition of the adult 

corpus into the training set of children's corpus for the DNN 

training procedure described in Section 4.1. The DNN topology 

and i-vector dimension were both kept the same. The LM is also 

retrained using the merged transcriptions from the training sets 

of the adult and children's corpora. 

This approach is more computationally expensive 

comparing to approach A. In addition, it is also unknown what 

amount of data should be added to optimize the performance of 

the combined speech recognizer for children's speech. Adding 

the adult corpus in its entirety would result in the adult corpus 

dominating the estimation of DNN weights, since the child 

corpus contributes only a relatively small faction of the training 

data. 

C. DNN pre-training with adult data 

Pre-training has been shown to be crucial for training deep 

structured models for speech recognition tasks [28, 29]; 

furthermore, it has been demonstrated that pre-training can 

initialize the DNN weights to a better starting point than random 

initialization prior to BP that allows the BP to facilitate a rapid 

global learning. Thus, DNNs have outperformed traditional 

shallow networks [30,31].  

In this approach, the DNN weights obtained by pre-training 

with the full training set from the adult corpus is first employed 

to initialize the weights of the DNN for children's speech 

acoustic modeling, then the DNN weights are updated using the 

BP procedure with the combined children's and adult training 

data. Compared to approach B, this approach saves time for pre-

training, which is usually very time-consuming. 

We also experimented with retraining only the final 

phoneme-dependent soft-max layer instead of all layers, or 

using deep bottleneck features generated from the adult DNN to 

build a tandem-based children ASR, since these approaches 

have been suggested to be beneficial in low-resource speech 

recognition [32-34]. However, preliminary results 

demonstrated that these approaches were not able to outperform 

the baseline system built in Section 4.1.  We think that the high-



level feature representation learned by the adult DNN still has a 

mismatch to the children's speech and that just updating the 

final layer transform is not enough to model the variation 

exhibited in a moderately sized children's speech corpus. 

5. Experimental Results and Analysis 

ASR systems were constructed using the Kaldi toolkit [35] 

based on the approaches described in Section 4.These systems 

are as follows: 

o Baseline: DNN-based speech recognizer with i-vectors 

described in Section 4.1.  The training data used for this 

system is the AsrTrain partition of the child corpus. 

o Adp-Adult: Speaker adaption of DNN with i-vectors 

described in Section 4.2 (A). The training data used for this 

system is the AsrTrain partition of the adult corpus. None 

of the data from the children's corpus is included. 

o Adp-Comb: Combining children's and adult training data 

as described in Section 4.2 (B).  The AsrTrain partition of 

the children's corpus and 10,000 responses (~150 hours) 

randomly selected from the AsrTrain partition of the adult 

corpus are used as training data for this system. We also 

tried adding more adult speech into the training set, but this 

addition of more data resulted in worse performance. 

o Adp-Pretr: DNN pre-training with Adult data as 

described in Section 4.2 (C).  The same data as in the Adp-

Comb system is used for acoustic modeling except that the 

weights of the DNN are initialized by pre-training with the 

full AsrTrain set from the adult corpus. 

The performance in terms of word error rate (WER) is 

reported on the AsrEval set of the children's corpus.  

Table 3 shows the WER of the Baseline and Adp-Comb 

systems using the following acoustic models: GMM-HMM and 

DNN-HMM, with/without discriminative training and i-

vectors. In the Baseline system, the DNN-HMM in combination 

with i-vectors can improve the recognition performance on 

children's speech over the GMM-HMM: WER is reduced from 

23.9% to 21.9% (8.4% relative WER reduction). This 

improvement is much smaller compared to that reported in the 

literature for larger corpora, which has been shown to be over 

20%. This indicates that the DNN could likely not demonstrate 

its strong learning ability for acoustic modeling when the 

training corpus is only moderately sized. Combining the adult 

data with the children's data does not improve the performance 

of children's speech recognition using the GMM-HMM, but it 

can significantly improve the performance of acoustic modeling 

with the DNN-HMM (a relative WER reduction of 10.1%). This 

further demonstrates that the features learned by the DNN are 

more invariant and selective. 

Table 3. Word error rates (%) for the Baseline and Adp-Comb 

systems using different acoustic models. 

Model Baseline Adp-Comb 

GMM 27.3 27.8 

GMM + MMI 23.9 23.5 

DNN + i-vector 22.4 20.3 

DNN+ sMBR+ i-vector 21.9 19.7 
 

The recognition performance using the Adpt-Adult system 

with/without LM interpolation is provided in Table 4, which 

indicates that LM interpolation is very effective when using an 

adult speech recognizer for children's speech. The interpolation 

weight 0.9 is the optimal weight according to our previous 

experience on LM interpolation for cross-task speech 

recognition [27]. However, the WER of 24.8% is higher than 

that obtained by the best GMM-HMM system, in which 

acoustic models are refined by MMI training. This is likely 

caused by the large acoustic mismatch between children's and 

adult speech. 

Table 4. Word error rates (%) for the Adp-Adult system with or 

without LM interpolation with the children's corpus. 

Adp-Adult LM weight=0 LM weight=0.9 

DNN+ sMBR+ i-vector 45.9 24.8 
 

The WERs obtained using the Baseline, Adp-Comb and 

Adp-Pretr systems with DNN-based acoustic modeling are 

shown in Table 5, where Adp-Pretr achieves the best 

performance among these three systems: a relative WER 

reduction of 11.9% is obtained in comparison to the baseline 

system. DNN pre-training with the full training set of adult 

speech is also effective in improving the performance of speech 

recognition for children. 

Table 5. Word error rates (%) for the Baseline, Adp-Comb and 

Adp-Pretr systems with DNN based acoustic modeling. 

Model Baseline Adp-Comb Adp-Pretr 

DNN+ sMBR+ i-vector 21.9 19.7 19.3 
 

Non-native speech contains many disfluency, including 

filled pauses, e.g., um, uh, and partial words,. These are often 

filtered out for automated assessment of language proficiency 

based on spoken language understanding. Table 6 shows the 

WERs obtained by the four systems (Baseline, Adp-adult, Adp-

Comb and Adp-pretr.) across the three tasks with filled pauses 

and partial words removed. The recognition performance for all 

tasks is improved in the Adp-Comb and Adpt-Pretr systems 

compared to the baseline. The largest gain is achieved for the 

PN task, in which WER is reduced from 24.6 % to 20.1%, i.e., 

a relative WER reduction of 18.3%.  

Table 6. Word error rates (%) of the best performance obtaind 

by the four systems across all 3 with filled pauses and partial 

words removed.  

 RA PN AS Overall 

Baseline 7.5 24.6 27.5 22.3 

Adp-Adult 9.9 26.8 29.5 24.4 

Adp-Comb 6.8 22.7 25 20.3 

Adp-Pretr 7.1 20.1 24.5 19.6 

6. Conclusions 

This paper has described three approaches to improving DNN-

based automatic recognition of non-native children speech with 

the help of an out-of-domain corpus of adult speech. The 

experimental results show that the approach of combining 

children's training data with adult data is effective in improving 

the performance of speech recognition for children. This can 

reduce the WER of the DNN-based system from 21.9% to 

19.7%. In addition, DNN pre-training with the full training set 

of a large adult corpus can further improve the performance of 

speech recognizer for children's speech. Future work will 

explore the benefits of improved recognition performance for 

the automated assessment of spoken language proficiency.     
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